metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D7, C7⋊C2, sometimes denoted D14 or Dih7 or Dih14, SmallGroup(14,1)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — D7 |
Generators and relations for D7
G = < a,b | a7=b2=1, bab=a-1 >
Character table of D7
class | 1 | 2 | 7A | 7B | 7C | |
size | 1 | 7 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal faithful |
ρ4 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal faithful |
ρ5 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal faithful |
(1 2 3 4 5 6 7)
(1 7)(2 6)(3 5)
G:=sub<Sym(7)| (1,2,3,4,5,6,7), (1,7)(2,6)(3,5)>;
G:=Group( (1,2,3,4,5,6,7), (1,7)(2,6)(3,5) );
G=PermutationGroup([[(1,2,3,4,5,6,7)], [(1,7),(2,6),(3,5)]])
G:=TransitiveGroup(7,2);
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 14)(7 13)
G:=sub<Sym(14)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,12)(2,11)(3,10)(4,9)(5,8)(6,14)(7,13)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,12)(2,11)(3,10)(4,9)(5,8)(6,14)(7,13) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,14),(7,13)]])
G:=TransitiveGroup(14,2);
D7 is a maximal subgroup of
F7 C7⋊D7
D7p: D21 D35 D49 D77 D91 D119 D133 D161 ...
D7 is a maximal quotient of
Dic7 C7⋊D7
D7p: D21 D35 D49 D77 D91 D119 D133 D161 ...
action | f(x) | Disc(f) |
---|---|---|
7T2 | x7-2x6-x5+x4+x3+x2-x-1 | -713 |
14T2 | x14+9x12+53x10+333x8+1251x6+731x4+5415x2+8591 | -2182·74·112·717 |
Matrix representation of D7 ►in GL2(𝔽13) generated by
11 | 8 |
5 | 12 |
12 | 0 |
8 | 1 |
G:=sub<GL(2,GF(13))| [11,5,8,12],[12,8,0,1] >;
D7 in GAP, Magma, Sage, TeX
D_7
% in TeX
G:=Group("D7");
// GroupNames label
G:=SmallGroup(14,1);
// by ID
G=gap.SmallGroup(14,1);
# by ID
G:=PCGroup([2,-2,-7,49]);
// Polycyclic
G:=Group<a,b|a^7=b^2=1,b*a*b=a^-1>;
// generators/relations
Export