Extensions 1→N→G→Q→1 with N=C7×D4 and Q=S3

Direct product G=N×Q with N=C7×D4 and Q=S3
dρLabelID
S3×C7×D4844S3xC7xD4336,188

Semidirect products G=N:Q with N=C7×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C7×D4)⋊1S3 = D4⋊D21φ: S3/C3C2 ⊆ Out C7×D41684+(C7xD4):1S3336,101
(C7×D4)⋊2S3 = D4×D21φ: S3/C3C2 ⊆ Out C7×D4844+(C7xD4):2S3336,198
(C7×D4)⋊3S3 = D42D21φ: S3/C3C2 ⊆ Out C7×D41684-(C7xD4):3S3336,199
(C7×D4)⋊4S3 = C7×D4⋊S3φ: S3/C3C2 ⊆ Out C7×D41684(C7xD4):4S3336,85
(C7×D4)⋊5S3 = C7×D42S3φ: trivial image1684(C7xD4):5S3336,189

Non-split extensions G=N.Q with N=C7×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C7×D4).1S3 = D4.D21φ: S3/C3C2 ⊆ Out C7×D41684-(C7xD4).1S3336,102
(C7×D4).2S3 = C7×D4.S3φ: S3/C3C2 ⊆ Out C7×D41684(C7xD4).2S3336,86

׿
×
𝔽