Copied to
clipboard

G = D4⋊D21order 336 = 24·3·7

The semidirect product of D4 and D21 acting via D21/C21=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4⋊D21, C217D8, D842C2, C28.9D6, C4.1D42, C42.34D4, C12.9D14, C84.1C22, C73(D4⋊S3), C33(D4⋊D7), (C3×D4)⋊1D7, (C7×D4)⋊1S3, C21⋊C81C2, (D4×C21)⋊1C2, C6.16(C7⋊D4), C2.4(C217D4), C14.16(C3⋊D4), SmallGroup(336,101)

Series: Derived Chief Lower central Upper central

C1C84 — D4⋊D21
C1C7C21C42C84D84 — D4⋊D21
C21C42C84 — D4⋊D21
C1C2C4D4

Generators and relations for D4⋊D21
 G = < a,b,c,d | a4=b2=c21=d2=1, bab=dad=a-1, ac=ca, bc=cb, dbd=ab, dcd=c-1 >

4C2
84C2
2C22
42C22
4C6
28S3
4C14
12D7
21D4
21C8
2C2×C6
14D6
2C2×C14
6D14
4C42
4D21
21D8
7D12
7C3⋊C8
3C7⋊C8
3D28
2D42
2C2×C42
7D4⋊S3
3D4⋊D7

Smallest permutation representation of D4⋊D21
On 168 points
Generators in S168
(1 65 26 56)(2 66 27 57)(3 67 28 58)(4 68 29 59)(5 69 30 60)(6 70 31 61)(7 71 32 62)(8 72 33 63)(9 73 34 43)(10 74 35 44)(11 75 36 45)(12 76 37 46)(13 77 38 47)(14 78 39 48)(15 79 40 49)(16 80 41 50)(17 81 42 51)(18 82 22 52)(19 83 23 53)(20 84 24 54)(21 64 25 55)(85 142 116 159)(86 143 117 160)(87 144 118 161)(88 145 119 162)(89 146 120 163)(90 147 121 164)(91 127 122 165)(92 128 123 166)(93 129 124 167)(94 130 125 168)(95 131 126 148)(96 132 106 149)(97 133 107 150)(98 134 108 151)(99 135 109 152)(100 136 110 153)(101 137 111 154)(102 138 112 155)(103 139 113 156)(104 140 114 157)(105 141 115 158)
(1 156)(2 157)(3 158)(4 159)(5 160)(6 161)(7 162)(8 163)(9 164)(10 165)(11 166)(12 167)(13 168)(14 148)(15 149)(16 150)(17 151)(18 152)(19 153)(20 154)(21 155)(22 135)(23 136)(24 137)(25 138)(26 139)(27 140)(28 141)(29 142)(30 143)(31 144)(32 145)(33 146)(34 147)(35 127)(36 128)(37 129)(38 130)(39 131)(40 132)(41 133)(42 134)(43 90)(44 91)(45 92)(46 93)(47 94)(48 95)(49 96)(50 97)(51 98)(52 99)(53 100)(54 101)(55 102)(56 103)(57 104)(58 105)(59 85)(60 86)(61 87)(62 88)(63 89)(64 112)(65 113)(66 114)(67 115)(68 116)(69 117)(70 118)(71 119)(72 120)(73 121)(74 122)(75 123)(76 124)(77 125)(78 126)(79 106)(80 107)(81 108)(82 109)(83 110)(84 111)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(22 29)(23 28)(24 27)(25 26)(30 42)(31 41)(32 40)(33 39)(34 38)(35 37)(43 77)(44 76)(45 75)(46 74)(47 73)(48 72)(49 71)(50 70)(51 69)(52 68)(53 67)(54 66)(55 65)(56 64)(57 84)(58 83)(59 82)(60 81)(61 80)(62 79)(63 78)(85 135)(86 134)(87 133)(88 132)(89 131)(90 130)(91 129)(92 128)(93 127)(94 147)(95 146)(96 145)(97 144)(98 143)(99 142)(100 141)(101 140)(102 139)(103 138)(104 137)(105 136)(106 162)(107 161)(108 160)(109 159)(110 158)(111 157)(112 156)(113 155)(114 154)(115 153)(116 152)(117 151)(118 150)(119 149)(120 148)(121 168)(122 167)(123 166)(124 165)(125 164)(126 163)

G:=sub<Sym(168)| (1,65,26,56)(2,66,27,57)(3,67,28,58)(4,68,29,59)(5,69,30,60)(6,70,31,61)(7,71,32,62)(8,72,33,63)(9,73,34,43)(10,74,35,44)(11,75,36,45)(12,76,37,46)(13,77,38,47)(14,78,39,48)(15,79,40,49)(16,80,41,50)(17,81,42,51)(18,82,22,52)(19,83,23,53)(20,84,24,54)(21,64,25,55)(85,142,116,159)(86,143,117,160)(87,144,118,161)(88,145,119,162)(89,146,120,163)(90,147,121,164)(91,127,122,165)(92,128,123,166)(93,129,124,167)(94,130,125,168)(95,131,126,148)(96,132,106,149)(97,133,107,150)(98,134,108,151)(99,135,109,152)(100,136,110,153)(101,137,111,154)(102,138,112,155)(103,139,113,156)(104,140,114,157)(105,141,115,158), (1,156)(2,157)(3,158)(4,159)(5,160)(6,161)(7,162)(8,163)(9,164)(10,165)(11,166)(12,167)(13,168)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,135)(23,136)(24,137)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,144)(32,145)(33,146)(34,147)(35,127)(36,128)(37,129)(38,130)(39,131)(40,132)(41,133)(42,134)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,96)(50,97)(51,98)(52,99)(53,100)(54,101)(55,102)(56,103)(57,104)(58,105)(59,85)(60,86)(61,87)(62,88)(63,89)(64,112)(65,113)(66,114)(67,115)(68,116)(69,117)(70,118)(71,119)(72,120)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,106)(80,107)(81,108)(82,109)(83,110)(84,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,29)(23,28)(24,27)(25,26)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(43,77)(44,76)(45,75)(46,74)(47,73)(48,72)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,84)(58,83)(59,82)(60,81)(61,80)(62,79)(63,78)(85,135)(86,134)(87,133)(88,132)(89,131)(90,130)(91,129)(92,128)(93,127)(94,147)(95,146)(96,145)(97,144)(98,143)(99,142)(100,141)(101,140)(102,139)(103,138)(104,137)(105,136)(106,162)(107,161)(108,160)(109,159)(110,158)(111,157)(112,156)(113,155)(114,154)(115,153)(116,152)(117,151)(118,150)(119,149)(120,148)(121,168)(122,167)(123,166)(124,165)(125,164)(126,163)>;

G:=Group( (1,65,26,56)(2,66,27,57)(3,67,28,58)(4,68,29,59)(5,69,30,60)(6,70,31,61)(7,71,32,62)(8,72,33,63)(9,73,34,43)(10,74,35,44)(11,75,36,45)(12,76,37,46)(13,77,38,47)(14,78,39,48)(15,79,40,49)(16,80,41,50)(17,81,42,51)(18,82,22,52)(19,83,23,53)(20,84,24,54)(21,64,25,55)(85,142,116,159)(86,143,117,160)(87,144,118,161)(88,145,119,162)(89,146,120,163)(90,147,121,164)(91,127,122,165)(92,128,123,166)(93,129,124,167)(94,130,125,168)(95,131,126,148)(96,132,106,149)(97,133,107,150)(98,134,108,151)(99,135,109,152)(100,136,110,153)(101,137,111,154)(102,138,112,155)(103,139,113,156)(104,140,114,157)(105,141,115,158), (1,156)(2,157)(3,158)(4,159)(5,160)(6,161)(7,162)(8,163)(9,164)(10,165)(11,166)(12,167)(13,168)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,135)(23,136)(24,137)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,144)(32,145)(33,146)(34,147)(35,127)(36,128)(37,129)(38,130)(39,131)(40,132)(41,133)(42,134)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,96)(50,97)(51,98)(52,99)(53,100)(54,101)(55,102)(56,103)(57,104)(58,105)(59,85)(60,86)(61,87)(62,88)(63,89)(64,112)(65,113)(66,114)(67,115)(68,116)(69,117)(70,118)(71,119)(72,120)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,106)(80,107)(81,108)(82,109)(83,110)(84,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,29)(23,28)(24,27)(25,26)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(43,77)(44,76)(45,75)(46,74)(47,73)(48,72)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,84)(58,83)(59,82)(60,81)(61,80)(62,79)(63,78)(85,135)(86,134)(87,133)(88,132)(89,131)(90,130)(91,129)(92,128)(93,127)(94,147)(95,146)(96,145)(97,144)(98,143)(99,142)(100,141)(101,140)(102,139)(103,138)(104,137)(105,136)(106,162)(107,161)(108,160)(109,159)(110,158)(111,157)(112,156)(113,155)(114,154)(115,153)(116,152)(117,151)(118,150)(119,149)(120,148)(121,168)(122,167)(123,166)(124,165)(125,164)(126,163) );

G=PermutationGroup([[(1,65,26,56),(2,66,27,57),(3,67,28,58),(4,68,29,59),(5,69,30,60),(6,70,31,61),(7,71,32,62),(8,72,33,63),(9,73,34,43),(10,74,35,44),(11,75,36,45),(12,76,37,46),(13,77,38,47),(14,78,39,48),(15,79,40,49),(16,80,41,50),(17,81,42,51),(18,82,22,52),(19,83,23,53),(20,84,24,54),(21,64,25,55),(85,142,116,159),(86,143,117,160),(87,144,118,161),(88,145,119,162),(89,146,120,163),(90,147,121,164),(91,127,122,165),(92,128,123,166),(93,129,124,167),(94,130,125,168),(95,131,126,148),(96,132,106,149),(97,133,107,150),(98,134,108,151),(99,135,109,152),(100,136,110,153),(101,137,111,154),(102,138,112,155),(103,139,113,156),(104,140,114,157),(105,141,115,158)], [(1,156),(2,157),(3,158),(4,159),(5,160),(6,161),(7,162),(8,163),(9,164),(10,165),(11,166),(12,167),(13,168),(14,148),(15,149),(16,150),(17,151),(18,152),(19,153),(20,154),(21,155),(22,135),(23,136),(24,137),(25,138),(26,139),(27,140),(28,141),(29,142),(30,143),(31,144),(32,145),(33,146),(34,147),(35,127),(36,128),(37,129),(38,130),(39,131),(40,132),(41,133),(42,134),(43,90),(44,91),(45,92),(46,93),(47,94),(48,95),(49,96),(50,97),(51,98),(52,99),(53,100),(54,101),(55,102),(56,103),(57,104),(58,105),(59,85),(60,86),(61,87),(62,88),(63,89),(64,112),(65,113),(66,114),(67,115),(68,116),(69,117),(70,118),(71,119),(72,120),(73,121),(74,122),(75,123),(76,124),(77,125),(78,126),(79,106),(80,107),(81,108),(82,109),(83,110),(84,111)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(22,29),(23,28),(24,27),(25,26),(30,42),(31,41),(32,40),(33,39),(34,38),(35,37),(43,77),(44,76),(45,75),(46,74),(47,73),(48,72),(49,71),(50,70),(51,69),(52,68),(53,67),(54,66),(55,65),(56,64),(57,84),(58,83),(59,82),(60,81),(61,80),(62,79),(63,78),(85,135),(86,134),(87,133),(88,132),(89,131),(90,130),(91,129),(92,128),(93,127),(94,147),(95,146),(96,145),(97,144),(98,143),(99,142),(100,141),(101,140),(102,139),(103,138),(104,137),(105,136),(106,162),(107,161),(108,160),(109,159),(110,158),(111,157),(112,156),(113,155),(114,154),(115,153),(116,152),(117,151),(118,150),(119,149),(120,148),(121,168),(122,167),(123,166),(124,165),(125,164),(126,163)]])

57 conjugacy classes

class 1 2A2B2C 3  4 6A6B6C7A7B7C8A8B 12 14A14B14C14D···14I21A···21F28A28B28C42A···42F42G···42R84A···84F
order122234666777881214141414···1421···2128282842···4242···4284···84
size1148422244222424242224···42···24442···24···44···4

57 irreducible representations

dim111122222222222444
type+++++++++++++++
imageC1C2C2C2S3D4D6D7D8C3⋊D4D14D21C7⋊D4D42C217D4D4⋊S3D4⋊D7D4⋊D21
kernelD4⋊D21C21⋊C8D84D4×C21C7×D4C42C28C3×D4C21C14C12D4C6C4C2C7C3C1
# reps1111111322366612136

Matrix representation of D4⋊D21 in GL4(𝔽337) generated by

1000
0100
0033647
00861
,
1000
0100
002663
00230311
,
1808400
1697700
0010
0001
,
14210900
8419500
0010
00251336
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,336,86,0,0,47,1],[1,0,0,0,0,1,0,0,0,0,26,230,0,0,63,311],[180,169,0,0,84,77,0,0,0,0,1,0,0,0,0,1],[142,84,0,0,109,195,0,0,0,0,1,251,0,0,0,336] >;

D4⋊D21 in GAP, Magma, Sage, TeX

D_4\rtimes D_{21}
% in TeX

G:=Group("D4:D21");
// GroupNames label

G:=SmallGroup(336,101);
// by ID

G=gap.SmallGroup(336,101);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,73,218,116,50,964,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^21=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D4⋊D21 in TeX

׿
×
𝔽