Extensions 1→N→G→Q→1 with N=C21 and Q=SD16

Direct product G=N×Q with N=C21 and Q=SD16
dρLabelID
SD16×C211682SD16xC21336,112

Semidirect products G=N:Q with N=C21 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C211SD16 = C28.D6φ: SD16/C4C22 ⊆ Aut C211684C21:1SD16336,32
C212SD16 = C42.D4φ: SD16/C4C22 ⊆ Aut C211684C21:2SD16336,33
C213SD16 = C6.D28φ: SD16/C4C22 ⊆ Aut C211684-C21:3SD16336,34
C214SD16 = C21⋊SD16φ: SD16/C4C22 ⊆ Aut C211684+C21:4SD16336,35
C215SD16 = D12.D7φ: SD16/C4C22 ⊆ Aut C211684-C21:5SD16336,36
C216SD16 = Dic6⋊D7φ: SD16/C4C22 ⊆ Aut C211684+C21:6SD16336,37
C217SD16 = C8⋊D21φ: SD16/C8C2 ⊆ Aut C211682C21:7SD16336,92
C218SD16 = C3×C56⋊C2φ: SD16/C8C2 ⊆ Aut C211682C21:8SD16336,60
C219SD16 = C7×C24⋊C2φ: SD16/C8C2 ⊆ Aut C211682C21:9SD16336,76
C2110SD16 = D4.D21φ: SD16/D4C2 ⊆ Aut C211684-C21:10SD16336,102
C2111SD16 = C3×D4.D7φ: SD16/D4C2 ⊆ Aut C211684C21:11SD16336,70
C2112SD16 = C7×D4.S3φ: SD16/D4C2 ⊆ Aut C211684C21:12SD16336,86
C2113SD16 = Q82D21φ: SD16/Q8C2 ⊆ Aut C211684+C21:13SD16336,103
C2114SD16 = C3×Q8⋊D7φ: SD16/Q8C2 ⊆ Aut C211684C21:14SD16336,71
C2115SD16 = C7×Q82S3φ: SD16/Q8C2 ⊆ Aut C211684C21:15SD16336,87


׿
×
𝔽