Copied to
clipboard

G = C3×C56⋊C2order 336 = 24·3·7

Direct product of C3 and C56⋊C2

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C56⋊C2, C246D7, C1686C2, C5610C6, C218SD16, D28.3C6, C42.23D4, C6.13D28, Dic147C6, C12.52D14, C84.59C22, C82(C3×D7), C4.8(C6×D7), C75(C3×SD16), C2.3(C3×D28), C28.31(C2×C6), (C3×D28).3C2, C14.17(C3×D4), (C3×Dic14)⋊7C2, SmallGroup(336,60)

Series: Derived Chief Lower central Upper central

C1C28 — C3×C56⋊C2
C1C7C14C28C84C3×D28 — C3×C56⋊C2
C7C14C28 — C3×C56⋊C2
C1C6C12C24

Generators and relations for C3×C56⋊C2
 G = < a,b,c | a3=b56=c2=1, ab=ba, ac=ca, cbc=b27 >

28C2
14C22
14C4
28C6
4D7
7Q8
7D4
14C12
14C2×C6
2D14
2Dic7
4C3×D7
7SD16
7C3×Q8
7C3×D4
2C6×D7
2C3×Dic7
7C3×SD16

Smallest permutation representation of C3×C56⋊C2
On 168 points
Generators in S168
(1 78 165)(2 79 166)(3 80 167)(4 81 168)(5 82 113)(6 83 114)(7 84 115)(8 85 116)(9 86 117)(10 87 118)(11 88 119)(12 89 120)(13 90 121)(14 91 122)(15 92 123)(16 93 124)(17 94 125)(18 95 126)(19 96 127)(20 97 128)(21 98 129)(22 99 130)(23 100 131)(24 101 132)(25 102 133)(26 103 134)(27 104 135)(28 105 136)(29 106 137)(30 107 138)(31 108 139)(32 109 140)(33 110 141)(34 111 142)(35 112 143)(36 57 144)(37 58 145)(38 59 146)(39 60 147)(40 61 148)(41 62 149)(42 63 150)(43 64 151)(44 65 152)(45 66 153)(46 67 154)(47 68 155)(48 69 156)(49 70 157)(50 71 158)(51 72 159)(52 73 160)(53 74 161)(54 75 162)(55 76 163)(56 77 164)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(2 28)(3 55)(4 26)(5 53)(6 24)(7 51)(8 22)(9 49)(10 20)(11 47)(12 18)(13 45)(14 16)(15 43)(17 41)(19 39)(21 37)(23 35)(25 33)(27 31)(30 56)(32 54)(34 52)(36 50)(38 48)(40 46)(42 44)(57 71)(58 98)(59 69)(60 96)(61 67)(62 94)(63 65)(64 92)(66 90)(68 88)(70 86)(72 84)(73 111)(74 82)(75 109)(76 80)(77 107)(79 105)(81 103)(83 101)(85 99)(87 97)(89 95)(91 93)(100 112)(102 110)(104 108)(113 161)(114 132)(115 159)(116 130)(117 157)(118 128)(119 155)(120 126)(121 153)(122 124)(123 151)(125 149)(127 147)(129 145)(131 143)(133 141)(134 168)(135 139)(136 166)(138 164)(140 162)(142 160)(144 158)(146 156)(148 154)(150 152)(163 167)

G:=sub<Sym(168)| (1,78,165)(2,79,166)(3,80,167)(4,81,168)(5,82,113)(6,83,114)(7,84,115)(8,85,116)(9,86,117)(10,87,118)(11,88,119)(12,89,120)(13,90,121)(14,91,122)(15,92,123)(16,93,124)(17,94,125)(18,95,126)(19,96,127)(20,97,128)(21,98,129)(22,99,130)(23,100,131)(24,101,132)(25,102,133)(26,103,134)(27,104,135)(28,105,136)(29,106,137)(30,107,138)(31,108,139)(32,109,140)(33,110,141)(34,111,142)(35,112,143)(36,57,144)(37,58,145)(38,59,146)(39,60,147)(40,61,148)(41,62,149)(42,63,150)(43,64,151)(44,65,152)(45,66,153)(46,67,154)(47,68,155)(48,69,156)(49,70,157)(50,71,158)(51,72,159)(52,73,160)(53,74,161)(54,75,162)(55,76,163)(56,77,164), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (2,28)(3,55)(4,26)(5,53)(6,24)(7,51)(8,22)(9,49)(10,20)(11,47)(12,18)(13,45)(14,16)(15,43)(17,41)(19,39)(21,37)(23,35)(25,33)(27,31)(30,56)(32,54)(34,52)(36,50)(38,48)(40,46)(42,44)(57,71)(58,98)(59,69)(60,96)(61,67)(62,94)(63,65)(64,92)(66,90)(68,88)(70,86)(72,84)(73,111)(74,82)(75,109)(76,80)(77,107)(79,105)(81,103)(83,101)(85,99)(87,97)(89,95)(91,93)(100,112)(102,110)(104,108)(113,161)(114,132)(115,159)(116,130)(117,157)(118,128)(119,155)(120,126)(121,153)(122,124)(123,151)(125,149)(127,147)(129,145)(131,143)(133,141)(134,168)(135,139)(136,166)(138,164)(140,162)(142,160)(144,158)(146,156)(148,154)(150,152)(163,167)>;

G:=Group( (1,78,165)(2,79,166)(3,80,167)(4,81,168)(5,82,113)(6,83,114)(7,84,115)(8,85,116)(9,86,117)(10,87,118)(11,88,119)(12,89,120)(13,90,121)(14,91,122)(15,92,123)(16,93,124)(17,94,125)(18,95,126)(19,96,127)(20,97,128)(21,98,129)(22,99,130)(23,100,131)(24,101,132)(25,102,133)(26,103,134)(27,104,135)(28,105,136)(29,106,137)(30,107,138)(31,108,139)(32,109,140)(33,110,141)(34,111,142)(35,112,143)(36,57,144)(37,58,145)(38,59,146)(39,60,147)(40,61,148)(41,62,149)(42,63,150)(43,64,151)(44,65,152)(45,66,153)(46,67,154)(47,68,155)(48,69,156)(49,70,157)(50,71,158)(51,72,159)(52,73,160)(53,74,161)(54,75,162)(55,76,163)(56,77,164), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (2,28)(3,55)(4,26)(5,53)(6,24)(7,51)(8,22)(9,49)(10,20)(11,47)(12,18)(13,45)(14,16)(15,43)(17,41)(19,39)(21,37)(23,35)(25,33)(27,31)(30,56)(32,54)(34,52)(36,50)(38,48)(40,46)(42,44)(57,71)(58,98)(59,69)(60,96)(61,67)(62,94)(63,65)(64,92)(66,90)(68,88)(70,86)(72,84)(73,111)(74,82)(75,109)(76,80)(77,107)(79,105)(81,103)(83,101)(85,99)(87,97)(89,95)(91,93)(100,112)(102,110)(104,108)(113,161)(114,132)(115,159)(116,130)(117,157)(118,128)(119,155)(120,126)(121,153)(122,124)(123,151)(125,149)(127,147)(129,145)(131,143)(133,141)(134,168)(135,139)(136,166)(138,164)(140,162)(142,160)(144,158)(146,156)(148,154)(150,152)(163,167) );

G=PermutationGroup([[(1,78,165),(2,79,166),(3,80,167),(4,81,168),(5,82,113),(6,83,114),(7,84,115),(8,85,116),(9,86,117),(10,87,118),(11,88,119),(12,89,120),(13,90,121),(14,91,122),(15,92,123),(16,93,124),(17,94,125),(18,95,126),(19,96,127),(20,97,128),(21,98,129),(22,99,130),(23,100,131),(24,101,132),(25,102,133),(26,103,134),(27,104,135),(28,105,136),(29,106,137),(30,107,138),(31,108,139),(32,109,140),(33,110,141),(34,111,142),(35,112,143),(36,57,144),(37,58,145),(38,59,146),(39,60,147),(40,61,148),(41,62,149),(42,63,150),(43,64,151),(44,65,152),(45,66,153),(46,67,154),(47,68,155),(48,69,156),(49,70,157),(50,71,158),(51,72,159),(52,73,160),(53,74,161),(54,75,162),(55,76,163),(56,77,164)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(2,28),(3,55),(4,26),(5,53),(6,24),(7,51),(8,22),(9,49),(10,20),(11,47),(12,18),(13,45),(14,16),(15,43),(17,41),(19,39),(21,37),(23,35),(25,33),(27,31),(30,56),(32,54),(34,52),(36,50),(38,48),(40,46),(42,44),(57,71),(58,98),(59,69),(60,96),(61,67),(62,94),(63,65),(64,92),(66,90),(68,88),(70,86),(72,84),(73,111),(74,82),(75,109),(76,80),(77,107),(79,105),(81,103),(83,101),(85,99),(87,97),(89,95),(91,93),(100,112),(102,110),(104,108),(113,161),(114,132),(115,159),(116,130),(117,157),(118,128),(119,155),(120,126),(121,153),(122,124),(123,151),(125,149),(127,147),(129,145),(131,143),(133,141),(134,168),(135,139),(136,166),(138,164),(140,162),(142,160),(144,158),(146,156),(148,154),(150,152),(163,167)]])

93 conjugacy classes

class 1 2A2B3A3B4A4B6A6B6C6D7A7B7C8A8B12A12B12C12D14A14B14C21A···21F24A24B24C24D28A···28F42A···42F56A···56L84A···84L168A···168X
order12233446666777881212121214141421···212424242428···2842···4256···5684···84168···168
size112811228112828222222228282222···222222···22···22···22···22···2

93 irreducible representations

dim11111111222222222222
type++++++++
imageC1C2C2C2C3C6C6C6D4D7SD16C3×D4D14C3×D7C3×SD16D28C6×D7C56⋊C2C3×D28C3×C56⋊C2
kernelC3×C56⋊C2C168C3×Dic14C3×D28C56⋊C2C56Dic14D28C42C24C21C14C12C8C7C6C4C3C2C1
# reps11112222132236466121224

Matrix representation of C3×C56⋊C2 in GL2(𝔽337) generated by

2080
0208
,
123177
160159
,
10
143336
G:=sub<GL(2,GF(337))| [208,0,0,208],[123,160,177,159],[1,143,0,336] >;

C3×C56⋊C2 in GAP, Magma, Sage, TeX

C_3\times C_{56}\rtimes C_2
% in TeX

G:=Group("C3xC56:C2");
// GroupNames label

G:=SmallGroup(336,60);
// by ID

G=gap.SmallGroup(336,60);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,169,79,867,69,10373]);
// Polycyclic

G:=Group<a,b,c|a^3=b^56=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^27>;
// generators/relations

Export

Subgroup lattice of C3×C56⋊C2 in TeX

׿
×
𝔽