Extensions 1→N→G→Q→1 with N=C6 and Q=C7×D4

Direct product G=N×Q with N=C6 and Q=C7×D4
dρLabelID
D4×C42168D4xC42336,205

Semidirect products G=N:Q with N=C6 and Q=C7×D4
extensionφ:Q→Aut NdρLabelID
C61(C7×D4) = C14×D12φ: C7×D4/C28C2 ⊆ Aut C6168C6:1(C7xD4)336,186
C62(C7×D4) = C14×C3⋊D4φ: C7×D4/C2×C14C2 ⊆ Aut C6168C6:2(C7xD4)336,193

Non-split extensions G=N.Q with N=C6 and Q=C7×D4
extensionφ:Q→Aut NdρLabelID
C6.1(C7×D4) = C7×C24⋊C2φ: C7×D4/C28C2 ⊆ Aut C61682C6.1(C7xD4)336,76
C6.2(C7×D4) = C7×D24φ: C7×D4/C28C2 ⊆ Aut C61682C6.2(C7xD4)336,77
C6.3(C7×D4) = C7×Dic12φ: C7×D4/C28C2 ⊆ Aut C63362C6.3(C7xD4)336,78
C6.4(C7×D4) = C7×C4⋊Dic3φ: C7×D4/C28C2 ⊆ Aut C6336C6.4(C7xD4)336,83
C6.5(C7×D4) = C7×Dic3⋊C4φ: C7×D4/C2×C14C2 ⊆ Aut C6336C6.5(C7xD4)336,82
C6.6(C7×D4) = C7×D6⋊C4φ: C7×D4/C2×C14C2 ⊆ Aut C6168C6.6(C7xD4)336,84
C6.7(C7×D4) = C7×D4⋊S3φ: C7×D4/C2×C14C2 ⊆ Aut C61684C6.7(C7xD4)336,85
C6.8(C7×D4) = C7×D4.S3φ: C7×D4/C2×C14C2 ⊆ Aut C61684C6.8(C7xD4)336,86
C6.9(C7×D4) = C7×Q82S3φ: C7×D4/C2×C14C2 ⊆ Aut C61684C6.9(C7xD4)336,87
C6.10(C7×D4) = C7×C3⋊Q16φ: C7×D4/C2×C14C2 ⊆ Aut C63364C6.10(C7xD4)336,88
C6.11(C7×D4) = C7×C6.D4φ: C7×D4/C2×C14C2 ⊆ Aut C6168C6.11(C7xD4)336,89
C6.12(C7×D4) = C22⋊C4×C21central extension (φ=1)168C6.12(C7xD4)336,107
C6.13(C7×D4) = C4⋊C4×C21central extension (φ=1)336C6.13(C7xD4)336,108
C6.14(C7×D4) = D8×C21central extension (φ=1)1682C6.14(C7xD4)336,111
C6.15(C7×D4) = SD16×C21central extension (φ=1)1682C6.15(C7xD4)336,112
C6.16(C7×D4) = Q16×C21central extension (φ=1)3362C6.16(C7xD4)336,113

׿
×
𝔽