direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C14×C3⋊D4, C42⋊9D4, C42.57C23, C6⋊2(C7×D4), C3⋊3(D4×C14), C21⋊18(C2×D4), D6⋊3(C2×C14), (C2×C14)⋊10D6, C23⋊3(S3×C7), (C22×C42)⋊6C2, (C22×C14)⋊3S3, (C22×C6)⋊4C14, C22⋊3(S3×C14), (C22×S3)⋊3C14, (C2×C42)⋊13C22, (C2×Dic3)⋊4C14, Dic3⋊2(C2×C14), (S3×C14)⋊11C22, (Dic3×C14)⋊10C2, C14.47(C22×S3), C6.10(C22×C14), (C7×Dic3)⋊9C22, (S3×C2×C14)⋊7C2, (C2×C6)⋊3(C2×C14), C2.10(S3×C2×C14), SmallGroup(336,193)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C14×C3⋊D4
G = < a,b,c,d | a14=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 216 in 108 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C7, C2×C4, D4, C23, C23, Dic3, D6, D6, C2×C6, C2×C6, C2×C6, C14, C14, C14, C2×D4, C21, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C28, C2×C14, C2×C14, C2×C14, S3×C7, C42, C42, C42, C2×C3⋊D4, C2×C28, C7×D4, C22×C14, C22×C14, C7×Dic3, S3×C14, S3×C14, C2×C42, C2×C42, C2×C42, D4×C14, Dic3×C14, C7×C3⋊D4, S3×C2×C14, C22×C42, C14×C3⋊D4
Quotients: C1, C2, C22, S3, C7, D4, C23, D6, C14, C2×D4, C3⋊D4, C22×S3, C2×C14, S3×C7, C2×C3⋊D4, C7×D4, C22×C14, S3×C14, D4×C14, C7×C3⋊D4, S3×C2×C14, C14×C3⋊D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 107 71)(2 108 72)(3 109 73)(4 110 74)(5 111 75)(6 112 76)(7 99 77)(8 100 78)(9 101 79)(10 102 80)(11 103 81)(12 104 82)(13 105 83)(14 106 84)(15 123 153)(16 124 154)(17 125 141)(18 126 142)(19 113 143)(20 114 144)(21 115 145)(22 116 146)(23 117 147)(24 118 148)(25 119 149)(26 120 150)(27 121 151)(28 122 152)(29 65 166)(30 66 167)(31 67 168)(32 68 155)(33 69 156)(34 70 157)(35 57 158)(36 58 159)(37 59 160)(38 60 161)(39 61 162)(40 62 163)(41 63 164)(42 64 165)(43 95 133)(44 96 134)(45 97 135)(46 98 136)(47 85 137)(48 86 138)(49 87 139)(50 88 140)(51 89 127)(52 90 128)(53 91 129)(54 92 130)(55 93 131)(56 94 132)
(1 150 66 98)(2 151 67 85)(3 152 68 86)(4 153 69 87)(5 154 70 88)(6 141 57 89)(7 142 58 90)(8 143 59 91)(9 144 60 92)(10 145 61 93)(11 146 62 94)(12 147 63 95)(13 148 64 96)(14 149 65 97)(15 33 139 74)(16 34 140 75)(17 35 127 76)(18 36 128 77)(19 37 129 78)(20 38 130 79)(21 39 131 80)(22 40 132 81)(23 41 133 82)(24 42 134 83)(25 29 135 84)(26 30 136 71)(27 31 137 72)(28 32 138 73)(43 104 117 164)(44 105 118 165)(45 106 119 166)(46 107 120 167)(47 108 121 168)(48 109 122 155)(49 110 123 156)(50 111 124 157)(51 112 125 158)(52 99 126 159)(53 100 113 160)(54 101 114 161)(55 102 115 162)(56 103 116 163)
(15 49)(16 50)(17 51)(18 52)(19 53)(20 54)(21 55)(22 56)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 166)(30 167)(31 168)(32 155)(33 156)(34 157)(35 158)(36 159)(37 160)(38 161)(39 162)(40 163)(41 164)(42 165)(71 107)(72 108)(73 109)(74 110)(75 111)(76 112)(77 99)(78 100)(79 101)(80 102)(81 103)(82 104)(83 105)(84 106)(85 151)(86 152)(87 153)(88 154)(89 141)(90 142)(91 143)(92 144)(93 145)(94 146)(95 147)(96 148)(97 149)(98 150)(113 129)(114 130)(115 131)(116 132)(117 133)(118 134)(119 135)(120 136)(121 137)(122 138)(123 139)(124 140)(125 127)(126 128)
G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,107,71)(2,108,72)(3,109,73)(4,110,74)(5,111,75)(6,112,76)(7,99,77)(8,100,78)(9,101,79)(10,102,80)(11,103,81)(12,104,82)(13,105,83)(14,106,84)(15,123,153)(16,124,154)(17,125,141)(18,126,142)(19,113,143)(20,114,144)(21,115,145)(22,116,146)(23,117,147)(24,118,148)(25,119,149)(26,120,150)(27,121,151)(28,122,152)(29,65,166)(30,66,167)(31,67,168)(32,68,155)(33,69,156)(34,70,157)(35,57,158)(36,58,159)(37,59,160)(38,60,161)(39,61,162)(40,62,163)(41,63,164)(42,64,165)(43,95,133)(44,96,134)(45,97,135)(46,98,136)(47,85,137)(48,86,138)(49,87,139)(50,88,140)(51,89,127)(52,90,128)(53,91,129)(54,92,130)(55,93,131)(56,94,132), (1,150,66,98)(2,151,67,85)(3,152,68,86)(4,153,69,87)(5,154,70,88)(6,141,57,89)(7,142,58,90)(8,143,59,91)(9,144,60,92)(10,145,61,93)(11,146,62,94)(12,147,63,95)(13,148,64,96)(14,149,65,97)(15,33,139,74)(16,34,140,75)(17,35,127,76)(18,36,128,77)(19,37,129,78)(20,38,130,79)(21,39,131,80)(22,40,132,81)(23,41,133,82)(24,42,134,83)(25,29,135,84)(26,30,136,71)(27,31,137,72)(28,32,138,73)(43,104,117,164)(44,105,118,165)(45,106,119,166)(46,107,120,167)(47,108,121,168)(48,109,122,155)(49,110,123,156)(50,111,124,157)(51,112,125,158)(52,99,126,159)(53,100,113,160)(54,101,114,161)(55,102,115,162)(56,103,116,163), (15,49)(16,50)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,166)(30,167)(31,168)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,161)(39,162)(40,163)(41,164)(42,165)(71,107)(72,108)(73,109)(74,110)(75,111)(76,112)(77,99)(78,100)(79,101)(80,102)(81,103)(82,104)(83,105)(84,106)(85,151)(86,152)(87,153)(88,154)(89,141)(90,142)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136)(121,137)(122,138)(123,139)(124,140)(125,127)(126,128)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,107,71)(2,108,72)(3,109,73)(4,110,74)(5,111,75)(6,112,76)(7,99,77)(8,100,78)(9,101,79)(10,102,80)(11,103,81)(12,104,82)(13,105,83)(14,106,84)(15,123,153)(16,124,154)(17,125,141)(18,126,142)(19,113,143)(20,114,144)(21,115,145)(22,116,146)(23,117,147)(24,118,148)(25,119,149)(26,120,150)(27,121,151)(28,122,152)(29,65,166)(30,66,167)(31,67,168)(32,68,155)(33,69,156)(34,70,157)(35,57,158)(36,58,159)(37,59,160)(38,60,161)(39,61,162)(40,62,163)(41,63,164)(42,64,165)(43,95,133)(44,96,134)(45,97,135)(46,98,136)(47,85,137)(48,86,138)(49,87,139)(50,88,140)(51,89,127)(52,90,128)(53,91,129)(54,92,130)(55,93,131)(56,94,132), (1,150,66,98)(2,151,67,85)(3,152,68,86)(4,153,69,87)(5,154,70,88)(6,141,57,89)(7,142,58,90)(8,143,59,91)(9,144,60,92)(10,145,61,93)(11,146,62,94)(12,147,63,95)(13,148,64,96)(14,149,65,97)(15,33,139,74)(16,34,140,75)(17,35,127,76)(18,36,128,77)(19,37,129,78)(20,38,130,79)(21,39,131,80)(22,40,132,81)(23,41,133,82)(24,42,134,83)(25,29,135,84)(26,30,136,71)(27,31,137,72)(28,32,138,73)(43,104,117,164)(44,105,118,165)(45,106,119,166)(46,107,120,167)(47,108,121,168)(48,109,122,155)(49,110,123,156)(50,111,124,157)(51,112,125,158)(52,99,126,159)(53,100,113,160)(54,101,114,161)(55,102,115,162)(56,103,116,163), (15,49)(16,50)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,166)(30,167)(31,168)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,161)(39,162)(40,163)(41,164)(42,165)(71,107)(72,108)(73,109)(74,110)(75,111)(76,112)(77,99)(78,100)(79,101)(80,102)(81,103)(82,104)(83,105)(84,106)(85,151)(86,152)(87,153)(88,154)(89,141)(90,142)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136)(121,137)(122,138)(123,139)(124,140)(125,127)(126,128) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,107,71),(2,108,72),(3,109,73),(4,110,74),(5,111,75),(6,112,76),(7,99,77),(8,100,78),(9,101,79),(10,102,80),(11,103,81),(12,104,82),(13,105,83),(14,106,84),(15,123,153),(16,124,154),(17,125,141),(18,126,142),(19,113,143),(20,114,144),(21,115,145),(22,116,146),(23,117,147),(24,118,148),(25,119,149),(26,120,150),(27,121,151),(28,122,152),(29,65,166),(30,66,167),(31,67,168),(32,68,155),(33,69,156),(34,70,157),(35,57,158),(36,58,159),(37,59,160),(38,60,161),(39,61,162),(40,62,163),(41,63,164),(42,64,165),(43,95,133),(44,96,134),(45,97,135),(46,98,136),(47,85,137),(48,86,138),(49,87,139),(50,88,140),(51,89,127),(52,90,128),(53,91,129),(54,92,130),(55,93,131),(56,94,132)], [(1,150,66,98),(2,151,67,85),(3,152,68,86),(4,153,69,87),(5,154,70,88),(6,141,57,89),(7,142,58,90),(8,143,59,91),(9,144,60,92),(10,145,61,93),(11,146,62,94),(12,147,63,95),(13,148,64,96),(14,149,65,97),(15,33,139,74),(16,34,140,75),(17,35,127,76),(18,36,128,77),(19,37,129,78),(20,38,130,79),(21,39,131,80),(22,40,132,81),(23,41,133,82),(24,42,134,83),(25,29,135,84),(26,30,136,71),(27,31,137,72),(28,32,138,73),(43,104,117,164),(44,105,118,165),(45,106,119,166),(46,107,120,167),(47,108,121,168),(48,109,122,155),(49,110,123,156),(50,111,124,157),(51,112,125,158),(52,99,126,159),(53,100,113,160),(54,101,114,161),(55,102,115,162),(56,103,116,163)], [(15,49),(16,50),(17,51),(18,52),(19,53),(20,54),(21,55),(22,56),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,166),(30,167),(31,168),(32,155),(33,156),(34,157),(35,158),(36,159),(37,160),(38,161),(39,162),(40,163),(41,164),(42,165),(71,107),(72,108),(73,109),(74,110),(75,111),(76,112),(77,99),(78,100),(79,101),(80,102),(81,103),(82,104),(83,105),(84,106),(85,151),(86,152),(87,153),(88,154),(89,141),(90,142),(91,143),(92,144),(93,145),(94,146),(95,147),(96,148),(97,149),(98,150),(113,129),(114,130),(115,131),(116,132),(117,133),(118,134),(119,135),(120,136),(121,137),(122,138),(123,139),(124,140),(125,127),(126,128)]])
126 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 6A | ··· | 6G | 7A | ··· | 7F | 14A | ··· | 14R | 14S | ··· | 14AD | 14AE | ··· | 14AP | 21A | ··· | 21F | 28A | ··· | 28L | 42A | ··· | 42AP |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 6 | ··· | 6 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 14 | ··· | 14 | 21 | ··· | 21 | 28 | ··· | 28 | 42 | ··· | 42 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 2 | 6 | 6 | 2 | ··· | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | ··· | 2 |
126 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | ||||||||||
| image | C1 | C2 | C2 | C2 | C2 | C7 | C14 | C14 | C14 | C14 | S3 | D4 | D6 | C3⋊D4 | S3×C7 | C7×D4 | S3×C14 | C7×C3⋊D4 |
| kernel | C14×C3⋊D4 | Dic3×C14 | C7×C3⋊D4 | S3×C2×C14 | C22×C42 | C2×C3⋊D4 | C2×Dic3 | C3⋊D4 | C22×S3 | C22×C6 | C22×C14 | C42 | C2×C14 | C14 | C23 | C6 | C22 | C2 |
| # reps | 1 | 1 | 4 | 1 | 1 | 6 | 6 | 24 | 6 | 6 | 1 | 2 | 3 | 4 | 6 | 12 | 18 | 24 |
Matrix representation of C14×C3⋊D4 ►in GL3(𝔽337) generated by
| 336 | 0 | 0 |
| 0 | 8 | 0 |
| 0 | 0 | 8 |
| 1 | 0 | 0 |
| 0 | 0 | 336 |
| 0 | 1 | 336 |
| 336 | 0 | 0 |
| 0 | 59 | 139 |
| 0 | 198 | 278 |
| 336 | 0 | 0 |
| 0 | 0 | 336 |
| 0 | 336 | 0 |
G:=sub<GL(3,GF(337))| [336,0,0,0,8,0,0,0,8],[1,0,0,0,0,1,0,336,336],[336,0,0,0,59,198,0,139,278],[336,0,0,0,0,336,0,336,0] >;
C14×C3⋊D4 in GAP, Magma, Sage, TeX
C_{14}\times C_3\rtimes D_4 % in TeX
G:=Group("C14xC3:D4"); // GroupNames label
G:=SmallGroup(336,193);
// by ID
G=gap.SmallGroup(336,193);
# by ID
G:=PCGroup([6,-2,-2,-2,-7,-2,-3,1082,8069]);
// Polycyclic
G:=Group<a,b,c,d|a^14=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations