Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=D7

Direct product G=N×Q with N=C3×Q8 and Q=D7
dρLabelID
C3×Q8×D71684C3xQ8xD7336,180

Semidirect products G=N:Q with N=C3×Q8 and Q=D7
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊1D7 = Q82D21φ: D7/C7C2 ⊆ Out C3×Q81684+(C3xQ8):1D7336,103
(C3×Q8)⋊2D7 = Q8×D21φ: D7/C7C2 ⊆ Out C3×Q81684-(C3xQ8):2D7336,200
(C3×Q8)⋊3D7 = Q83D21φ: D7/C7C2 ⊆ Out C3×Q81684+(C3xQ8):3D7336,201
(C3×Q8)⋊4D7 = C3×Q8⋊D7φ: D7/C7C2 ⊆ Out C3×Q81684(C3xQ8):4D7336,71
(C3×Q8)⋊5D7 = C3×Q82D7φ: trivial image1684(C3xQ8):5D7336,181

Non-split extensions G=N.Q with N=C3×Q8 and Q=D7
extensionφ:Q→Out NdρLabelID
(C3×Q8).1D7 = C217Q16φ: D7/C7C2 ⊆ Out C3×Q83364-(C3xQ8).1D7336,104
(C3×Q8).2D7 = C3×C7⋊Q16φ: D7/C7C2 ⊆ Out C3×Q83364(C3xQ8).2D7336,72

׿
×
𝔽