Extensions 1→N→G→Q→1 with N=C3 and Q=C3×C36

Direct product G=N×Q with N=C3 and Q=C3×C36
dρLabelID
C32×C36324C3^2xC36324,105

Semidirect products G=N:Q with N=C3 and Q=C3×C36
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×C36) = Dic3×C3×C9φ: C3×C36/C3×C18C2 ⊆ Aut C3108C3:(C3xC36)324,91

Non-split extensions G=N.Q with N=C3 and Q=C3×C36
extensionφ:Q→Aut NdρLabelID
C3.1(C3×C36) = C4×C32⋊C9central stem extension (φ=1)108C3.1(C3xC36)324,27
C3.2(C3×C36) = C4×C9⋊C9central stem extension (φ=1)324C3.2(C3xC36)324,28
C3.3(C3×C36) = C4×C27⋊C3central stem extension (φ=1)1083C3.3(C3xC36)324,30

׿
×
𝔽