Copied to
clipboard

G = C4×C27⋊C3order 324 = 22·34

Direct product of C4 and C27⋊C3

direct product, metacyclic, nilpotent (class 2), monomial, 3-elementary

Aliases: C4×C27⋊C3, C108⋊C3, C36.C9, C9.C36, C272C12, C54.2C6, C32.C36, C18.3C18, C36.2C32, (C3×C12).C9, (C3×C36).3C3, C3.3(C3×C36), C12.3(C3×C9), C9.1(C3×C12), (C3×C9).4C12, C18.5(C3×C6), C6.4(C3×C18), (C3×C6).3C18, (C3×C18).17C6, C2.(C2×C27⋊C3), (C2×C27⋊C3).2C2, SmallGroup(324,30)

Series: Derived Chief Lower central Upper central

C1C3 — C4×C27⋊C3
C1C3C9C18C3×C18C2×C27⋊C3 — C4×C27⋊C3
C1C3 — C4×C27⋊C3
C1C36 — C4×C27⋊C3

Generators and relations for C4×C27⋊C3
 G = < a,b,c | a4=b27=c3=1, ab=ba, ac=ca, cbc-1=b10 >

3C3
3C6
3C12

Smallest permutation representation of C4×C27⋊C3
On 108 points
Generators in S108
(1 88 53 73)(2 89 54 74)(3 90 28 75)(4 91 29 76)(5 92 30 77)(6 93 31 78)(7 94 32 79)(8 95 33 80)(9 96 34 81)(10 97 35 55)(11 98 36 56)(12 99 37 57)(13 100 38 58)(14 101 39 59)(15 102 40 60)(16 103 41 61)(17 104 42 62)(18 105 43 63)(19 106 44 64)(20 107 45 65)(21 108 46 66)(22 82 47 67)(23 83 48 68)(24 84 49 69)(25 85 50 70)(26 86 51 71)(27 87 52 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(2 20 11)(3 12 21)(5 23 14)(6 15 24)(8 26 17)(9 18 27)(28 37 46)(30 48 39)(31 40 49)(33 51 42)(34 43 52)(36 54 45)(56 74 65)(57 66 75)(59 77 68)(60 69 78)(62 80 71)(63 72 81)(83 101 92)(84 93 102)(86 104 95)(87 96 105)(89 107 98)(90 99 108)

G:=sub<Sym(108)| (1,88,53,73)(2,89,54,74)(3,90,28,75)(4,91,29,76)(5,92,30,77)(6,93,31,78)(7,94,32,79)(8,95,33,80)(9,96,34,81)(10,97,35,55)(11,98,36,56)(12,99,37,57)(13,100,38,58)(14,101,39,59)(15,102,40,60)(16,103,41,61)(17,104,42,62)(18,105,43,63)(19,106,44,64)(20,107,45,65)(21,108,46,66)(22,82,47,67)(23,83,48,68)(24,84,49,69)(25,85,50,70)(26,86,51,71)(27,87,52,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (2,20,11)(3,12,21)(5,23,14)(6,15,24)(8,26,17)(9,18,27)(28,37,46)(30,48,39)(31,40,49)(33,51,42)(34,43,52)(36,54,45)(56,74,65)(57,66,75)(59,77,68)(60,69,78)(62,80,71)(63,72,81)(83,101,92)(84,93,102)(86,104,95)(87,96,105)(89,107,98)(90,99,108)>;

G:=Group( (1,88,53,73)(2,89,54,74)(3,90,28,75)(4,91,29,76)(5,92,30,77)(6,93,31,78)(7,94,32,79)(8,95,33,80)(9,96,34,81)(10,97,35,55)(11,98,36,56)(12,99,37,57)(13,100,38,58)(14,101,39,59)(15,102,40,60)(16,103,41,61)(17,104,42,62)(18,105,43,63)(19,106,44,64)(20,107,45,65)(21,108,46,66)(22,82,47,67)(23,83,48,68)(24,84,49,69)(25,85,50,70)(26,86,51,71)(27,87,52,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (2,20,11)(3,12,21)(5,23,14)(6,15,24)(8,26,17)(9,18,27)(28,37,46)(30,48,39)(31,40,49)(33,51,42)(34,43,52)(36,54,45)(56,74,65)(57,66,75)(59,77,68)(60,69,78)(62,80,71)(63,72,81)(83,101,92)(84,93,102)(86,104,95)(87,96,105)(89,107,98)(90,99,108) );

G=PermutationGroup([[(1,88,53,73),(2,89,54,74),(3,90,28,75),(4,91,29,76),(5,92,30,77),(6,93,31,78),(7,94,32,79),(8,95,33,80),(9,96,34,81),(10,97,35,55),(11,98,36,56),(12,99,37,57),(13,100,38,58),(14,101,39,59),(15,102,40,60),(16,103,41,61),(17,104,42,62),(18,105,43,63),(19,106,44,64),(20,107,45,65),(21,108,46,66),(22,82,47,67),(23,83,48,68),(24,84,49,69),(25,85,50,70),(26,86,51,71),(27,87,52,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(2,20,11),(3,12,21),(5,23,14),(6,15,24),(8,26,17),(9,18,27),(28,37,46),(30,48,39),(31,40,49),(33,51,42),(34,43,52),(36,54,45),(56,74,65),(57,66,75),(59,77,68),(60,69,78),(62,80,71),(63,72,81),(83,101,92),(84,93,102),(86,104,95),(87,96,105),(89,107,98),(90,99,108)]])

132 conjugacy classes

class 1  2 3A3B3C3D4A4B6A6B6C6D9A···9F9G9H9I9J12A12B12C12D12E12F12G12H18A···18F18G18H18I18J27A···27R36A···36L36M···36T54A···54R108A···108AJ
order1233334466669···99999121212121212121218···181818181827···2736···3636···3654···54108···108
size1111331111331···13333111133331···133333···31···13···33···33···3

132 irreducible representations

dim111111111111111333
type++
imageC1C2C3C3C4C6C6C9C9C12C12C18C18C36C36C27⋊C3C2×C27⋊C3C4×C27⋊C3
kernelC4×C27⋊C3C2×C27⋊C3C108C3×C36C27⋊C3C54C3×C18C36C3×C12C27C3×C9C18C3×C6C9C32C4C2C1
# reps116226212612412624126612

Matrix representation of C4×C27⋊C3 in GL4(𝔽109) generated by

76000
0100
0010
0001
,
45000
0010
00045
07500
,
63000
0100
00450
00063
G:=sub<GL(4,GF(109))| [76,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[45,0,0,0,0,0,0,75,0,1,0,0,0,0,45,0],[63,0,0,0,0,1,0,0,0,0,45,0,0,0,0,63] >;

C4×C27⋊C3 in GAP, Magma, Sage, TeX

C_4\times C_{27}\rtimes C_3
% in TeX

G:=Group("C4xC27:C3");
// GroupNames label

G:=SmallGroup(324,30);
// by ID

G=gap.SmallGroup(324,30);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,-3,-3,108,223,1034,118]);
// Polycyclic

G:=Group<a,b,c|a^4=b^27=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^10>;
// generators/relations

Export

Subgroup lattice of C4×C27⋊C3 in TeX

׿
×
𝔽