Extensions 1→N→G→Q→1 with N=C3 and Q=S3×D9

Direct product G=N×Q with N=C3 and Q=S3×D9
dρLabelID
C3×S3×D9364C3xS3xD9324,114

Semidirect products G=N:Q with N=C3 and Q=S3×D9
extensionφ:Q→Aut NdρLabelID
C31(S3×D9) = D9×C3⋊S3φ: S3×D9/C3×D9C2 ⊆ Aut C354C3:1(S3xD9)324,119
C32(S3×D9) = S3×C9⋊S3φ: S3×D9/S3×C9C2 ⊆ Aut C354C3:2(S3xD9)324,120
C33(S3×D9) = C325D18φ: S3×D9/C9⋊S3C2 ⊆ Aut C3364C3:3(S3xD9)324,123

Non-split extensions G=N.Q with N=C3 and Q=S3×D9
extensionφ:Q→Aut NdρLabelID
C3.1(S3×D9) = D92φ: S3×D9/C3×D9C2 ⊆ Aut C3184+C3.1(S3xD9)324,36
C3.2(S3×D9) = S3×D27φ: S3×D9/S3×C9C2 ⊆ Aut C3544+C3.2(S3xD9)324,38
C3.3(S3×D9) = C32⋊D18φ: S3×D9/C9⋊S3C2 ⊆ Aut C31812+C3.3(S3xD9)324,37

׿
×
𝔽