Copied to
clipboard

G = S3xD27order 324 = 22·34

Direct product of S3 and D27

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3xD27, C27:1D6, C3:1D54, C32.2D18, C27:S3:C2, C9.1S32, (S3xC27):C2, (C3xD27):C2, (S3xC9).S3, (C3xC27):C22, (C3xS3).D9, C3.2(S3xD9), (C3xC9).5D6, SmallGroup(324,38)

Series: Derived Chief Lower central Upper central

C1C3xC27 — S3xD27
C1C3C9C3xC9C3xC27S3xC27 — S3xD27
C3xC27 — S3xD27
C1

Generators and relations for S3xD27
 G = < a,b,c,d | a3=b2=c27=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 508 in 46 conjugacy classes, 16 normal (all characteristic)
Quotients: C1, C2, C22, S3, D6, D9, D18, S32, D27, D54, S3xD9, S3xD27
3C2
27C2
81C2
2C3
81C22
3C6
9S3
27S3
27S3
27C6
54S3
2C9
27D6
27D6
3C18
3D9
9D9
9C3:S3
9C3xS3
18D9
2C27
9D18
9S32
3C3xD9
3D27
3C9:S3
3C54
6D27
3D54
3S3xD9

Smallest permutation representation of S3xD27
On 54 points
Generators in S54
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)(28 46 37)(29 47 38)(30 48 39)(31 49 40)(32 50 41)(33 51 42)(34 52 43)(35 53 44)(36 54 45)
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 28)(18 29)(19 30)(20 31)(21 32)(22 33)(23 34)(24 35)(25 36)(26 37)(27 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(1 39)(2 38)(3 37)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 28)(13 54)(14 53)(15 52)(16 51)(17 50)(18 49)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)(25 42)(26 41)(27 40)

G:=sub<Sym(54)| (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35)(25,36)(26,37)(27,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,54)(14,53)(15,52)(16,51)(17,50)(18,49)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,42)(26,41)(27,40)>;

G:=Group( (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35)(25,36)(26,37)(27,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,54)(14,53)(15,52)(16,51)(17,50)(18,49)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,42)(26,41)(27,40) );

G=PermutationGroup([[(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27),(28,46,37),(29,47,38),(30,48,39),(31,49,40),(32,50,41),(33,51,42),(34,52,43),(35,53,44),(36,54,45)], [(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,28),(18,29),(19,30),(20,31),(21,32),(22,33),(23,34),(24,35),(25,36),(26,37),(27,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(1,39),(2,38),(3,37),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,28),(13,54),(14,53),(15,52),(16,51),(17,50),(18,49),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43),(25,42),(26,41),(27,40)]])

45 conjugacy classes

class 1 2A2B2C3A3B3C6A6B9A9B9C9D9E9F18A18B18C27A···27I27J···27R54A···54I
order12223336699999918181827···2727···2754···54
size1327812246542224446662···24···46···6

45 irreducible representations

dim111122222222444
type+++++++++++++++
imageC1C2C2C2S3S3D6D6D9D18D27D54S32S3xD9S3xD27
kernelS3xD27C3xD27S3xC27C27:S3D27S3xC9C27C3xC9C3xS3C32S3C3C9C3C1
# reps111111113399139

Matrix representation of S3xD27 in GL4(F109) generated by

1000
0100
001081
001080
,
1000
0100
0001
0010
,
76300
759900
0010
0001
,
108000
2100
0010
0001
G:=sub<GL(4,GF(109))| [1,0,0,0,0,1,0,0,0,0,108,108,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0],[7,75,0,0,63,99,0,0,0,0,1,0,0,0,0,1],[108,2,0,0,0,1,0,0,0,0,1,0,0,0,0,1] >;

S3xD27 in GAP, Magma, Sage, TeX

S_3\times D_{27}
% in TeX

G:=Group("S3xD27");
// GroupNames label

G:=SmallGroup(324,38);
// by ID

G=gap.SmallGroup(324,38);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,404,824,579,2710,208,3899]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^27=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of S3xD27 in TeX

׿
x
:
Z
F
o
wr
Q
<