Extensions 1→N→G→Q→1 with N=C7 and Q=C3×M4(2)

Direct product G=N×Q with N=C7 and Q=C3×M4(2)
dρLabelID
M4(2)×C211682M4(2)xC21336,110

Semidirect products G=N:Q with N=C7 and Q=C3×M4(2)
extensionφ:Q→Aut NdρLabelID
C71(C3×M4(2)) = C8⋊F7φ: C3×M4(2)/C8C6 ⊆ Aut C7566C7:1(C3xM4(2))336,8
C72(C3×M4(2)) = C28.C12φ: C3×M4(2)/C2×C4C6 ⊆ Aut C7566C7:2(C3xM4(2))336,13
C73(C3×M4(2)) = M4(2)×C7⋊C3φ: C3×M4(2)/M4(2)C3 ⊆ Aut C7566C7:3(C3xM4(2))336,52
C74(C3×M4(2)) = C3×C8⋊D7φ: C3×M4(2)/C24C2 ⊆ Aut C71682C7:4(C3xM4(2))336,59
C75(C3×M4(2)) = C3×C4.Dic7φ: C3×M4(2)/C2×C12C2 ⊆ Aut C71682C7:5(C3xM4(2))336,64


׿
×
𝔽