Copied to
clipboard

G = M4(2)×C21order 336 = 24·3·7

Direct product of C21 and M4(2)

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: M4(2)×C21, C4.C84, C83C42, C247C14, C5615C6, C16815C2, C22.C84, C84.10C4, C12.4C28, C28.10C12, C84.82C22, (C2×C42).1C4, (C2×C6).1C28, C2.3(C2×C84), (C2×C4).2C42, C4.6(C2×C42), (C2×C28).19C6, (C2×C12).8C14, (C2×C14).5C12, C42.43(C2×C4), C28.45(C2×C6), C6.12(C2×C28), (C2×C84).20C2, C12.22(C2×C14), C14.26(C2×C12), SmallGroup(336,110)

Series: Derived Chief Lower central Upper central

C1C2 — M4(2)×C21
C1C2C4C28C84C168 — M4(2)×C21
C1C2 — M4(2)×C21
C1C84 — M4(2)×C21

Generators and relations for M4(2)×C21
 G = < a,b,c | a21=b8=c2=1, ab=ba, ac=ca, cbc=b5 >

2C2
2C6
2C14
2C42

Smallest permutation representation of M4(2)×C21
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 26 140 76 160 102 116 49)(2 27 141 77 161 103 117 50)(3 28 142 78 162 104 118 51)(4 29 143 79 163 105 119 52)(5 30 144 80 164 85 120 53)(6 31 145 81 165 86 121 54)(7 32 146 82 166 87 122 55)(8 33 147 83 167 88 123 56)(9 34 127 84 168 89 124 57)(10 35 128 64 148 90 125 58)(11 36 129 65 149 91 126 59)(12 37 130 66 150 92 106 60)(13 38 131 67 151 93 107 61)(14 39 132 68 152 94 108 62)(15 40 133 69 153 95 109 63)(16 41 134 70 154 96 110 43)(17 42 135 71 155 97 111 44)(18 22 136 72 156 98 112 45)(19 23 137 73 157 99 113 46)(20 24 138 74 158 100 114 47)(21 25 139 75 159 101 115 48)
(22 98)(23 99)(24 100)(25 101)(26 102)(27 103)(28 104)(29 105)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)(51 78)(52 79)(53 80)(54 81)(55 82)(56 83)(57 84)(58 64)(59 65)(60 66)(61 67)(62 68)(63 69)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,26,140,76,160,102,116,49)(2,27,141,77,161,103,117,50)(3,28,142,78,162,104,118,51)(4,29,143,79,163,105,119,52)(5,30,144,80,164,85,120,53)(6,31,145,81,165,86,121,54)(7,32,146,82,166,87,122,55)(8,33,147,83,167,88,123,56)(9,34,127,84,168,89,124,57)(10,35,128,64,148,90,125,58)(11,36,129,65,149,91,126,59)(12,37,130,66,150,92,106,60)(13,38,131,67,151,93,107,61)(14,39,132,68,152,94,108,62)(15,40,133,69,153,95,109,63)(16,41,134,70,154,96,110,43)(17,42,135,71,155,97,111,44)(18,22,136,72,156,98,112,45)(19,23,137,73,157,99,113,46)(20,24,138,74,158,100,114,47)(21,25,139,75,159,101,115,48), (22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(57,84)(58,64)(59,65)(60,66)(61,67)(62,68)(63,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,26,140,76,160,102,116,49)(2,27,141,77,161,103,117,50)(3,28,142,78,162,104,118,51)(4,29,143,79,163,105,119,52)(5,30,144,80,164,85,120,53)(6,31,145,81,165,86,121,54)(7,32,146,82,166,87,122,55)(8,33,147,83,167,88,123,56)(9,34,127,84,168,89,124,57)(10,35,128,64,148,90,125,58)(11,36,129,65,149,91,126,59)(12,37,130,66,150,92,106,60)(13,38,131,67,151,93,107,61)(14,39,132,68,152,94,108,62)(15,40,133,69,153,95,109,63)(16,41,134,70,154,96,110,43)(17,42,135,71,155,97,111,44)(18,22,136,72,156,98,112,45)(19,23,137,73,157,99,113,46)(20,24,138,74,158,100,114,47)(21,25,139,75,159,101,115,48), (22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(57,84)(58,64)(59,65)(60,66)(61,67)(62,68)(63,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,26,140,76,160,102,116,49),(2,27,141,77,161,103,117,50),(3,28,142,78,162,104,118,51),(4,29,143,79,163,105,119,52),(5,30,144,80,164,85,120,53),(6,31,145,81,165,86,121,54),(7,32,146,82,166,87,122,55),(8,33,147,83,167,88,123,56),(9,34,127,84,168,89,124,57),(10,35,128,64,148,90,125,58),(11,36,129,65,149,91,126,59),(12,37,130,66,150,92,106,60),(13,38,131,67,151,93,107,61),(14,39,132,68,152,94,108,62),(15,40,133,69,153,95,109,63),(16,41,134,70,154,96,110,43),(17,42,135,71,155,97,111,44),(18,22,136,72,156,98,112,45),(19,23,137,73,157,99,113,46),(20,24,138,74,158,100,114,47),(21,25,139,75,159,101,115,48)], [(22,98),(23,99),(24,100),(25,101),(26,102),(27,103),(28,104),(29,105),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77),(51,78),(52,79),(53,80),(54,81),(55,82),(56,83),(57,84),(58,64),(59,65),(60,66),(61,67),(62,68),(63,69)]])

210 conjugacy classes

class 1 2A2B3A3B4A4B4C6A6B6C6D7A···7F8A8B8C8D12A12B12C12D12E12F14A···14F14G···14L21A···21L24A···24H28A···28L28M···28R42A···42L42M···42X56A···56X84A···84X84Y···84AJ168A···168AV
order1223344466667···7888812121212121214···1414···1421···2124···2428···2828···2842···4242···4256···5684···8484···84168···168
size1121111211221···122221111221···12···21···12···21···12···21···12···22···21···12···22···2

210 irreducible representations

dim111111111111111111112222
type+++
imageC1C2C2C3C4C4C6C6C7C12C12C14C14C21C28C28C42C42C84C84M4(2)C3×M4(2)C7×M4(2)M4(2)×C21
kernelM4(2)×C21C168C2×C84C7×M4(2)C84C2×C42C56C2×C28C3×M4(2)C28C2×C14C24C2×C12M4(2)C12C2×C6C8C2×C4C4C22C21C7C3C1
# reps1212224264412612121224122424241224

Matrix representation of M4(2)×C21 in GL3(𝔽337) generated by

20800
0520
0052
,
33600
0336335
02431
,
33600
010
0336336
G:=sub<GL(3,GF(337))| [208,0,0,0,52,0,0,0,52],[336,0,0,0,336,243,0,335,1],[336,0,0,0,1,336,0,0,336] >;

M4(2)×C21 in GAP, Magma, Sage, TeX

M_4(2)\times C_{21}
% in TeX

G:=Group("M4(2)xC21");
// GroupNames label

G:=SmallGroup(336,110);
// by ID

G=gap.SmallGroup(336,110);
# by ID

G:=PCGroup([6,-2,-2,-3,-7,-2,-2,504,2041,88]);
// Polycyclic

G:=Group<a,b,c|a^21=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^5>;
// generators/relations

Export

Subgroup lattice of M4(2)×C21 in TeX

׿
×
𝔽