Extensions 1→N→G→Q→1 with N=C3 and Q=S3xC18

Direct product G=NxQ with N=C3 and Q=S3xC18
dρLabelID
S3xC3xC18108S3xC3xC18324,137

Semidirect products G=N:Q with N=C3 and Q=S3xC18
extensionφ:Q→Aut NdρLabelID
C3:1(S3xC18) = S32xC9φ: S3xC18/S3xC9C2 ⊆ Aut C3364C3:1(S3xC18)324,115
C3:2(S3xC18) = C18xC3:S3φ: S3xC18/C3xC18C2 ⊆ Aut C3108C3:2(S3xC18)324,143

Non-split extensions G=N.Q with N=C3 and Q=S3xC18
extensionφ:Q→Aut NdρLabelID
C3.1(S3xC18) = D9xC18φ: S3xC18/C3xC18C2 ⊆ Aut C3362C3.1(S3xC18)324,61
C3.2(S3xC18) = C2xC32:C18φ: S3xC18/C3xC18C2 ⊆ Aut C3366C3.2(S3xC18)324,62
C3.3(S3xC18) = C2xC9:C18φ: S3xC18/C3xC18C2 ⊆ Aut C3366C3.3(S3xC18)324,64
C3.4(S3xC18) = S3xC54central extension (φ=1)1082C3.4(S3xC18)324,66

׿
x
:
Z
F
o
wr
Q
<