Copied to
clipboard

G = S3×C54order 324 = 22·34

Direct product of C54 and S3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: S3×C54, C6⋊C54, C3⋊(C2×C54), (S3×C9).C6, (S3×C6).C9, (C3×C54)⋊1C2, (C3×S3).C18, (S3×C18).C3, C9.4(S3×C6), C6.9(S3×C9), C3.4(S3×C18), (C3×C6).6C18, (C3×C27)⋊2C22, C18.11(C3×S3), (C3×C18).22C6, C32.2(C2×C18), (C3×C9).5(C2×C6), SmallGroup(324,66)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C54
C1C3C32C3×C9C3×C27S3×C27 — S3×C54
C3 — S3×C54
C1C54

Generators and relations for S3×C54
 G = < a,b,c | a54=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C2
2C3
3C22
2C6
3C6
3C6
2C9
3C2×C6
2C18
3C18
3C18
2C27
3C2×C18
2C54
3C54
3C54
3C2×C54

Smallest permutation representation of S3×C54
On 108 points
Generators in S108
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 19 37)(2 20 38)(3 21 39)(4 22 40)(5 23 41)(6 24 42)(7 25 43)(8 26 44)(9 27 45)(10 28 46)(11 29 47)(12 30 48)(13 31 49)(14 32 50)(15 33 51)(16 34 52)(17 35 53)(18 36 54)(55 91 73)(56 92 74)(57 93 75)(58 94 76)(59 95 77)(60 96 78)(61 97 79)(62 98 80)(63 99 81)(64 100 82)(65 101 83)(66 102 84)(67 103 85)(68 104 86)(69 105 87)(70 106 88)(71 107 89)(72 108 90)
(1 74)(2 75)(3 76)(4 77)(5 78)(6 79)(7 80)(8 81)(9 82)(10 83)(11 84)(12 85)(13 86)(14 87)(15 88)(16 89)(17 90)(18 91)(19 92)(20 93)(21 94)(22 95)(23 96)(24 97)(25 98)(26 99)(27 100)(28 101)(29 102)(30 103)(31 104)(32 105)(33 106)(34 107)(35 108)(36 55)(37 56)(38 57)(39 58)(40 59)(41 60)(42 61)(43 62)(44 63)(45 64)(46 65)(47 66)(48 67)(49 68)(50 69)(51 70)(52 71)(53 72)(54 73)

G:=sub<Sym(108)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,19,37)(2,20,38)(3,21,39)(4,22,40)(5,23,41)(6,24,42)(7,25,43)(8,26,44)(9,27,45)(10,28,46)(11,29,47)(12,30,48)(13,31,49)(14,32,50)(15,33,51)(16,34,52)(17,35,53)(18,36,54)(55,91,73)(56,92,74)(57,93,75)(58,94,76)(59,95,77)(60,96,78)(61,97,79)(62,98,80)(63,99,81)(64,100,82)(65,101,83)(66,102,84)(67,103,85)(68,104,86)(69,105,87)(70,106,88)(71,107,89)(72,108,90), (1,74)(2,75)(3,76)(4,77)(5,78)(6,79)(7,80)(8,81)(9,82)(10,83)(11,84)(12,85)(13,86)(14,87)(15,88)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(23,96)(24,97)(25,98)(26,99)(27,100)(28,101)(29,102)(30,103)(31,104)(32,105)(33,106)(34,107)(35,108)(36,55)(37,56)(38,57)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,19,37)(2,20,38)(3,21,39)(4,22,40)(5,23,41)(6,24,42)(7,25,43)(8,26,44)(9,27,45)(10,28,46)(11,29,47)(12,30,48)(13,31,49)(14,32,50)(15,33,51)(16,34,52)(17,35,53)(18,36,54)(55,91,73)(56,92,74)(57,93,75)(58,94,76)(59,95,77)(60,96,78)(61,97,79)(62,98,80)(63,99,81)(64,100,82)(65,101,83)(66,102,84)(67,103,85)(68,104,86)(69,105,87)(70,106,88)(71,107,89)(72,108,90), (1,74)(2,75)(3,76)(4,77)(5,78)(6,79)(7,80)(8,81)(9,82)(10,83)(11,84)(12,85)(13,86)(14,87)(15,88)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(23,96)(24,97)(25,98)(26,99)(27,100)(28,101)(29,102)(30,103)(31,104)(32,105)(33,106)(34,107)(35,108)(36,55)(37,56)(38,57)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,19,37),(2,20,38),(3,21,39),(4,22,40),(5,23,41),(6,24,42),(7,25,43),(8,26,44),(9,27,45),(10,28,46),(11,29,47),(12,30,48),(13,31,49),(14,32,50),(15,33,51),(16,34,52),(17,35,53),(18,36,54),(55,91,73),(56,92,74),(57,93,75),(58,94,76),(59,95,77),(60,96,78),(61,97,79),(62,98,80),(63,99,81),(64,100,82),(65,101,83),(66,102,84),(67,103,85),(68,104,86),(69,105,87),(70,106,88),(71,107,89),(72,108,90)], [(1,74),(2,75),(3,76),(4,77),(5,78),(6,79),(7,80),(8,81),(9,82),(10,83),(11,84),(12,85),(13,86),(14,87),(15,88),(16,89),(17,90),(18,91),(19,92),(20,93),(21,94),(22,95),(23,96),(24,97),(25,98),(26,99),(27,100),(28,101),(29,102),(30,103),(31,104),(32,105),(33,106),(34,107),(35,108),(36,55),(37,56),(38,57),(39,58),(40,59),(41,60),(42,61),(43,62),(44,63),(45,64),(46,65),(47,66),(48,67),(49,68),(50,69),(51,70),(52,71),(53,72),(54,73)]])

162 conjugacy classes

class 1 2A2B2C3A3B3C3D3E6A6B6C6D6E6F6G6H6I9A···9F9G···9L18A···18F18G···18L18M···18X27A···27R27S···27AJ54A···54R54S···54AJ54AK···54BT
order1222333336666666669···99···918···1818···1818···1827···2727···2754···5454···5454···54
size1133112221122233331···12···21···12···23···31···12···21···12···23···3

162 irreducible representations

dim11111111111122222222
type+++++
imageC1C2C2C3C6C6C9C18C18C27C54C54S3D6C3×S3S3×C6S3×C9S3×C18S3×C27S3×C54
kernelS3×C54S3×C27C3×C54S3×C18S3×C9C3×C18S3×C6C3×S3C3×C6D6S3C6C54C27C18C9C6C3C2C1
# reps12124261261836181122661818

Matrix representation of S3×C54 in GL3(𝔽109) generated by

10600
0210
0021
,
100
0630
0045
,
100
001
010
G:=sub<GL(3,GF(109))| [106,0,0,0,21,0,0,0,21],[1,0,0,0,63,0,0,0,45],[1,0,0,0,0,1,0,1,0] >;

S3×C54 in GAP, Magma, Sage, TeX

S_3\times C_{54}
% in TeX

G:=Group("S3xC54");
// GroupNames label

G:=SmallGroup(324,66);
// by ID

G=gap.SmallGroup(324,66);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,68,93,7781]);
// Polycyclic

G:=Group<a,b,c|a^54=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C54 in TeX

׿
×
𝔽