Extensions 1→N→G→Q→1 with N=C2×C3≀C3 and Q=C2

Direct product G=N×Q with N=C2×C3≀C3 and Q=C2
dρLabelID
C22×C3≀C336C2^2xC3wrC3324,86

Semidirect products G=N:Q with N=C2×C3≀C3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3≀C3)⋊1C2 = C2×C33⋊S3φ: C2/C1C2 ⊆ Out C2×C3≀C3186+(C2xC3wrC3):1C2324,77
(C2×C3≀C3)⋊2C2 = C2×C3≀S3φ: C2/C1C2 ⊆ Out C2×C3≀C3183(C2xC3wrC3):2C2324,68
(C2×C3≀C3)⋊3C2 = C2×C33⋊C6φ: C2/C1C2 ⊆ Out C2×C3≀C3186+(C2xC3wrC3):3C2324,69

Non-split extensions G=N.Q with N=C2×C3≀C3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3≀C3).1C2 = C33⋊Dic3φ: C2/C1C2 ⊆ Out C2×C3≀C3366-(C2xC3wrC3).1C2324,22
(C2×C3≀C3).2C2 = He3⋊C12φ: C2/C1C2 ⊆ Out C2×C3≀C3363(C2xC3wrC3).2C2324,13
(C2×C3≀C3).3C2 = C33⋊C12φ: C2/C1C2 ⊆ Out C2×C3≀C3366-(C2xC3wrC3).3C2324,14
(C2×C3≀C3).4C2 = C4×C3≀C3φ: trivial image363(C2xC3wrC3).4C2324,31

׿
×
𝔽