Copied to
clipboard

G = He3:C12order 324 = 22·34

The semidirect product of He3 and C12 acting via C12/C2=C6

non-abelian, supersoluble, monomial

Aliases: He3:C12, C33:1Dic3, C2.C3wrS3, C3wrC3:2C4, He3:3C4:1C3, (C2xHe3).1C6, (C32xC6).2S3, C3.6(C32:C12), C6.11(C32:C6), C32.1(C3xDic3), (C3xC6).1(C3xS3), (C2xC3wrC3).2C2, SmallGroup(324,13)

Series: Derived Chief Lower central Upper central

C1C3He3 — He3:C12
C1C3C32He3C2xHe3C2xC3wrC3 — He3:C12
He3 — He3:C12
C1C6

Generators and relations for He3:C12
 G = < a,b,c,d | a3=b3=c3=d12=1, ab=ba, cac-1=ab-1, dad-1=a-1b, bc=cb, bd=db, dcd-1=ac-1 >

Subgroups: 192 in 52 conjugacy classes, 14 normal (all characteristic)
Quotients: C1, C2, C3, C4, S3, C6, Dic3, C12, C3xS3, C3xDic3, C32:C6, C32:C12, C3wrS3, He3:C12
3C3
3C3
3C3
3C3
9C3
9C4
3C6
3C6
3C6
3C6
9C6
3C32
3C32
3C32
3C32
3C32
6C9
3Dic3
9C12
9C12
9C12
9C12
9Dic3
3C3xC6
3C3xC6
3C3xC6
3C3xC6
3C3xC6
6C18
23- 1+2
3C3xDic3
3C3xDic3
3C3xDic3
3C3xDic3
9C3xC12
9C3xDic3
2C2x3- 1+2
3C32xDic3

Smallest permutation representation of He3:C12
On 36 points
Generators in S36
(2 10 6)(4 12 8)(14 22 18)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 29 33)(26 30 34)(27 31 35)(28 32 36)
(1 28 20)(2 21 33)(3 26 22)(4 23 31)(5 36 24)(6 13 29)(7 34 14)(8 15 27)(9 32 16)(10 17 25)(11 30 18)(12 19 35)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (2,10,6)(4,12,8)(14,22,18)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36), (1,28,20)(2,21,33)(3,26,22)(4,23,31)(5,36,24)(6,13,29)(7,34,14)(8,15,27)(9,32,16)(10,17,25)(11,30,18)(12,19,35), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)>;

G:=Group( (2,10,6)(4,12,8)(14,22,18)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36), (1,28,20)(2,21,33)(3,26,22)(4,23,31)(5,36,24)(6,13,29)(7,34,14)(8,15,27)(9,32,16)(10,17,25)(11,30,18)(12,19,35), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(2,10,6),(4,12,8),(14,22,18),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,29,33),(26,30,34),(27,31,35),(28,32,36)], [(1,28,20),(2,21,33),(3,26,22),(4,23,31),(5,36,24),(6,13,29),(7,34,14),(8,15,27),(9,32,16),(10,17,25),(11,30,18),(12,19,35)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)]])

44 conjugacy classes

class 1  2 3A3B3C···3H3I3J4A4B6A6B6C···6H6I6J9A9B12A···12P18A18B
order12333···33344666···6669912···121818
size11113···361899113···361818189···91818

44 irreducible representations

dim11111122223366
type+++-+-
imageC1C2C3C4C6C12S3Dic3C3xS3C3xDic3C3wrS3He3:C12C32:C6C32:C12
kernelHe3:C12C2xC3wrC3He3:3C4C3wrC3C2xHe3He3C32xC6C33C3xC6C32C2C1C6C3
# reps1122241122121211

Matrix representation of He3:C12 in GL3(F13) generated by

300
010
009
,
900
090
009
,
040
007
700
,
1100
004
030
G:=sub<GL(3,GF(13))| [3,0,0,0,1,0,0,0,9],[9,0,0,0,9,0,0,0,9],[0,0,7,4,0,0,0,7,0],[11,0,0,0,0,3,0,4,0] >;

He3:C12 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes C_{12}
% in TeX

G:=Group("He3:C12");
// GroupNames label

G:=SmallGroup(324,13);
// by ID

G=gap.SmallGroup(324,13);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,579,585,5404,382]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^12=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1*b,b*c=c*b,b*d=d*b,d*c*d^-1=a*c^-1>;
// generators/relations

Export

Subgroup lattice of He3:C12 in TeX

׿
x
:
Z
F
o
wr
Q
<