Extensions 1→N→G→Q→1 with N=C7×D12 and Q=C2

Direct product G=N×Q with N=C7×D12 and Q=C2
dρLabelID
C14×D12168C14xD12336,186

Semidirect products G=N:Q with N=C7×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×D12)⋊1C2 = C7⋊D24φ: C2/C1C2 ⊆ Out C7×D121684+(C7xD12):1C2336,31
(C7×D12)⋊2C2 = D125D7φ: C2/C1C2 ⊆ Out C7×D121684-(C7xD12):2C2336,145
(C7×D12)⋊3C2 = D7×D12φ: C2/C1C2 ⊆ Out C7×D12844+(C7xD12):3C2336,148
(C7×D12)⋊4C2 = C21⋊D8φ: C2/C1C2 ⊆ Out C7×D121684(C7xD12):4C2336,29
(C7×D12)⋊5C2 = D12⋊D7φ: C2/C1C2 ⊆ Out C7×D121684(C7xD12):5C2336,141
(C7×D12)⋊6C2 = C28⋊D6φ: C2/C1C2 ⊆ Out C7×D12844(C7xD12):6C2336,150
(C7×D12)⋊7C2 = C7×D24φ: C2/C1C2 ⊆ Out C7×D121682(C7xD12):7C2336,77
(C7×D12)⋊8C2 = C7×D4⋊S3φ: C2/C1C2 ⊆ Out C7×D121684(C7xD12):8C2336,85
(C7×D12)⋊9C2 = S3×C7×D4φ: C2/C1C2 ⊆ Out C7×D12844(C7xD12):9C2336,188
(C7×D12)⋊10C2 = C7×Q83S3φ: C2/C1C2 ⊆ Out C7×D121684(C7xD12):10C2336,191
(C7×D12)⋊11C2 = C7×C4○D12φ: trivial image1682(C7xD12):11C2336,187

Non-split extensions G=N.Q with N=C7×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×D12).1C2 = D12.D7φ: C2/C1C2 ⊆ Out C7×D121684-(C7xD12).1C2336,36
(C7×D12).2C2 = C42.D4φ: C2/C1C2 ⊆ Out C7×D121684(C7xD12).2C2336,33
(C7×D12).3C2 = C7×C24⋊C2φ: C2/C1C2 ⊆ Out C7×D121682(C7xD12).3C2336,76
(C7×D12).4C2 = C7×Q82S3φ: C2/C1C2 ⊆ Out C7×D121684(C7xD12).4C2336,87

׿
×
𝔽