Copied to
clipboard

G = C7xD12order 168 = 23·3·7

Direct product of C7 and D12

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C7xD12, C21:6D4, C84:5C2, C28:3S3, C12:1C14, D6:1C14, C14.15D6, C42.20C22, C4:(S3xC7), C3:1(C7xD4), (S3xC14):4C2, C2.4(S3xC14), C6.3(C2xC14), SmallGroup(168,31)

Series: Derived Chief Lower central Upper central

C1C6 — C7xD12
C1C3C6C42S3xC14 — C7xD12
C3C6 — C7xD12
C1C14C28

Generators and relations for C7xD12
 G = < a,b,c | a7=b12=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 68 in 32 conjugacy classes, 18 normal (14 characteristic)
Quotients: C1, C2, C22, S3, C7, D4, D6, C14, D12, C2xC14, S3xC7, C7xD4, S3xC14, C7xD12
6C2
6C2
3C22
3C22
2S3
2S3
6C14
6C14
3D4
3C2xC14
3C2xC14
2S3xC7
2S3xC7
3C7xD4

Smallest permutation representation of C7xD12
On 84 points
Generators in S84
(1 25 69 46 75 60 14)(2 26 70 47 76 49 15)(3 27 71 48 77 50 16)(4 28 72 37 78 51 17)(5 29 61 38 79 52 18)(6 30 62 39 80 53 19)(7 31 63 40 81 54 20)(8 32 64 41 82 55 21)(9 33 65 42 83 56 22)(10 34 66 43 84 57 23)(11 35 67 44 73 58 24)(12 36 68 45 74 59 13)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 14)(15 24)(16 23)(17 22)(18 21)(19 20)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(37 42)(38 41)(39 40)(43 48)(44 47)(45 46)(49 58)(50 57)(51 56)(52 55)(53 54)(59 60)(61 64)(62 63)(65 72)(66 71)(67 70)(68 69)(73 76)(74 75)(77 84)(78 83)(79 82)(80 81)

G:=sub<Sym(84)| (1,25,69,46,75,60,14)(2,26,70,47,76,49,15)(3,27,71,48,77,50,16)(4,28,72,37,78,51,17)(5,29,61,38,79,52,18)(6,30,62,39,80,53,19)(7,31,63,40,81,54,20)(8,32,64,41,82,55,21)(9,33,65,42,83,56,22)(10,34,66,43,84,57,23)(11,35,67,44,73,58,24)(12,36,68,45,74,59,13), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14)(15,24)(16,23)(17,22)(18,21)(19,20)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,42)(38,41)(39,40)(43,48)(44,47)(45,46)(49,58)(50,57)(51,56)(52,55)(53,54)(59,60)(61,64)(62,63)(65,72)(66,71)(67,70)(68,69)(73,76)(74,75)(77,84)(78,83)(79,82)(80,81)>;

G:=Group( (1,25,69,46,75,60,14)(2,26,70,47,76,49,15)(3,27,71,48,77,50,16)(4,28,72,37,78,51,17)(5,29,61,38,79,52,18)(6,30,62,39,80,53,19)(7,31,63,40,81,54,20)(8,32,64,41,82,55,21)(9,33,65,42,83,56,22)(10,34,66,43,84,57,23)(11,35,67,44,73,58,24)(12,36,68,45,74,59,13), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14)(15,24)(16,23)(17,22)(18,21)(19,20)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,42)(38,41)(39,40)(43,48)(44,47)(45,46)(49,58)(50,57)(51,56)(52,55)(53,54)(59,60)(61,64)(62,63)(65,72)(66,71)(67,70)(68,69)(73,76)(74,75)(77,84)(78,83)(79,82)(80,81) );

G=PermutationGroup([[(1,25,69,46,75,60,14),(2,26,70,47,76,49,15),(3,27,71,48,77,50,16),(4,28,72,37,78,51,17),(5,29,61,38,79,52,18),(6,30,62,39,80,53,19),(7,31,63,40,81,54,20),(8,32,64,41,82,55,21),(9,33,65,42,83,56,22),(10,34,66,43,84,57,23),(11,35,67,44,73,58,24),(12,36,68,45,74,59,13)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14),(15,24),(16,23),(17,22),(18,21),(19,20),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(37,42),(38,41),(39,40),(43,48),(44,47),(45,46),(49,58),(50,57),(51,56),(52,55),(53,54),(59,60),(61,64),(62,63),(65,72),(66,71),(67,70),(68,69),(73,76),(74,75),(77,84),(78,83),(79,82),(80,81)]])

C7xD12 is a maximal subgroup of
C21:D8  C7:D24  C42.D4  D12.D7  D12:D7  D12:5D7  C28:D6  S3xC7xD4

63 conjugacy classes

class 1 2A2B2C 3  4  6 7A···7F12A12B14A···14F14G···14R21A···21F28A···28F42A···42F84A···84L
order12223467···7121214···1414···1421···2128···2842···4284···84
size11662221···1221···16···62···22···22···22···2

63 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C7C14C14S3D4D6D12S3xC7C7xD4S3xC14C7xD12
kernelC7xD12C84S3xC14D12C12D6C28C21C14C7C4C3C2C1
# reps1126612111266612

Matrix representation of C7xD12 in GL4(F337) generated by

79000
07900
0010
0001
,
33633500
1100
000336
001336
,
33633500
0100
001336
000336
G:=sub<GL(4,GF(337))| [79,0,0,0,0,79,0,0,0,0,1,0,0,0,0,1],[336,1,0,0,335,1,0,0,0,0,0,1,0,0,336,336],[336,0,0,0,335,1,0,0,0,0,1,0,0,0,336,336] >;

C7xD12 in GAP, Magma, Sage, TeX

C_7\times D_{12}
% in TeX

G:=Group("C7xD12");
// GroupNames label

G:=SmallGroup(168,31);
// by ID

G=gap.SmallGroup(168,31);
# by ID

G:=PCGroup([5,-2,-2,-7,-2,-3,301,146,2804]);
// Polycyclic

G:=Group<a,b,c|a^7=b^12=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C7xD12 in TeX

׿
x
:
Z
F
o
wr
Q
<