Extensions 1→N→G→Q→1 with N=C3 and Q=C3×C3⋊Dic3

Direct product G=N×Q with N=C3 and Q=C3×C3⋊Dic3
dρLabelID
C32×C3⋊Dic336C3^2xC3:Dic3324,156

Semidirect products G=N:Q with N=C3 and Q=C3×C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×C3⋊Dic3) = C3×C335C4φ: C3×C3⋊Dic3/C32×C6C2 ⊆ Aut C3108C3:(C3xC3:Dic3)324,157

Non-split extensions G=N.Q with N=C3 and Q=C3×C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C3.1(C3×C3⋊Dic3) = C3×C9⋊Dic3φ: C3×C3⋊Dic3/C32×C6C2 ⊆ Aut C3108C3.1(C3xC3:Dic3)324,96
C3.2(C3×C3⋊Dic3) = C334C12φ: C3×C3⋊Dic3/C32×C6C2 ⊆ Aut C3108C3.2(C3xC3:Dic3)324,98
C3.3(C3×C3⋊Dic3) = C33.Dic3φ: C3×C3⋊Dic3/C32×C6C2 ⊆ Aut C3108C3.3(C3xC3:Dic3)324,100
C3.4(C3×C3⋊Dic3) = He3.4Dic3φ: C3×C3⋊Dic3/C32×C6C2 ⊆ Aut C31086-C3.4(C3xC3:Dic3)324,101
C3.5(C3×C3⋊Dic3) = C9×C3⋊Dic3central extension (φ=1)108C3.5(C3xC3:Dic3)324,97
C3.6(C3×C3⋊Dic3) = C3×He33C4central stem extension (φ=1)108C3.6(C3xC3:Dic3)324,99
C3.7(C3×C3⋊Dic3) = He3.5C12central stem extension (φ=1)1083C3.7(C3xC3:Dic3)324,102

׿
×
𝔽