Copied to
clipboard

G = C3×C9⋊Dic3order 324 = 22·34

Direct product of C3 and C9⋊Dic3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3×C9⋊Dic3, C324Dic9, C33.7Dic3, C3⋊(C3×Dic9), (C32×C9)⋊6C4, (C3×C6).9D9, C6.7(C3×D9), (C3×C9)⋊15C12, C6.8(C9⋊S3), C18.7(C3×S3), C93(C3×Dic3), (C3×C18).27C6, (C3×C18).24S3, (C3×C9)⋊10Dic3, (C32×C18).4C2, (C32×C6).16S3, C32.9(C3⋊Dic3), C32.16(C3×Dic3), C2.(C3×C9⋊S3), C6.1(C3×C3⋊S3), (C3×C6).34(C3×S3), C3.1(C3×C3⋊Dic3), (C3×C6).19(C3⋊S3), SmallGroup(324,96)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C3×C9⋊Dic3
C1C3C32C3×C9C3×C18C32×C18 — C3×C9⋊Dic3
C3×C9 — C3×C9⋊Dic3
C1C6

Generators and relations for C3×C9⋊Dic3
 G = < a,b,c,d | a3=b9=c6=1, d2=c3, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Subgroups: 252 in 90 conjugacy classes, 42 normal (18 characteristic)
C1, C2, C3, C3, C3, C4, C6, C6, C6, C9, C9, C32, C32, C32, Dic3, C12, C18, C18, C3×C6, C3×C6, C3×C6, C3×C9, C3×C9, C3×C9, C33, Dic9, C3×Dic3, C3⋊Dic3, C3×C18, C3×C18, C3×C18, C32×C6, C32×C9, C3×Dic9, C9⋊Dic3, C3×C3⋊Dic3, C32×C18, C3×C9⋊Dic3
Quotients: C1, C2, C3, C4, S3, C6, Dic3, C12, D9, C3×S3, C3⋊S3, Dic9, C3×Dic3, C3⋊Dic3, C3×D9, C9⋊S3, C3×C3⋊S3, C3×Dic9, C9⋊Dic3, C3×C3⋊Dic3, C3×C9⋊S3, C3×C9⋊Dic3

Smallest permutation representation of C3×C9⋊Dic3
On 108 points
Generators in S108
(1 29 37)(2 30 38)(3 31 39)(4 32 40)(5 33 41)(6 34 42)(7 35 43)(8 36 44)(9 28 45)(10 104 19)(11 105 20)(12 106 21)(13 107 22)(14 108 23)(15 100 24)(16 101 25)(17 102 26)(18 103 27)(46 60 69)(47 61 70)(48 62 71)(49 63 72)(50 55 64)(51 56 65)(52 57 66)(53 58 67)(54 59 68)(73 83 94)(74 84 95)(75 85 96)(76 86 97)(77 87 98)(78 88 99)(79 89 91)(80 90 92)(81 82 93)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)
(1 48 35 59 40 65)(2 49 36 60 41 66)(3 50 28 61 42 67)(4 51 29 62 43 68)(5 52 30 63 44 69)(6 53 31 55 45 70)(7 54 32 56 37 71)(8 46 33 57 38 72)(9 47 34 58 39 64)(10 80 25 98 107 84)(11 81 26 99 108 85)(12 73 27 91 100 86)(13 74 19 92 101 87)(14 75 20 93 102 88)(15 76 21 94 103 89)(16 77 22 95 104 90)(17 78 23 96 105 82)(18 79 24 97 106 83)
(1 23 59 82)(2 22 60 90)(3 21 61 89)(4 20 62 88)(5 19 63 87)(6 27 55 86)(7 26 56 85)(8 25 57 84)(9 24 58 83)(10 72 98 33)(11 71 99 32)(12 70 91 31)(13 69 92 30)(14 68 93 29)(15 67 94 28)(16 66 95 36)(17 65 96 35)(18 64 97 34)(37 108 54 81)(38 107 46 80)(39 106 47 79)(40 105 48 78)(41 104 49 77)(42 103 50 76)(43 102 51 75)(44 101 52 74)(45 100 53 73)

G:=sub<Sym(108)| (1,29,37)(2,30,38)(3,31,39)(4,32,40)(5,33,41)(6,34,42)(7,35,43)(8,36,44)(9,28,45)(10,104,19)(11,105,20)(12,106,21)(13,107,22)(14,108,23)(15,100,24)(16,101,25)(17,102,26)(18,103,27)(46,60,69)(47,61,70)(48,62,71)(49,63,72)(50,55,64)(51,56,65)(52,57,66)(53,58,67)(54,59,68)(73,83,94)(74,84,95)(75,85,96)(76,86,97)(77,87,98)(78,88,99)(79,89,91)(80,90,92)(81,82,93), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (1,48,35,59,40,65)(2,49,36,60,41,66)(3,50,28,61,42,67)(4,51,29,62,43,68)(5,52,30,63,44,69)(6,53,31,55,45,70)(7,54,32,56,37,71)(8,46,33,57,38,72)(9,47,34,58,39,64)(10,80,25,98,107,84)(11,81,26,99,108,85)(12,73,27,91,100,86)(13,74,19,92,101,87)(14,75,20,93,102,88)(15,76,21,94,103,89)(16,77,22,95,104,90)(17,78,23,96,105,82)(18,79,24,97,106,83), (1,23,59,82)(2,22,60,90)(3,21,61,89)(4,20,62,88)(5,19,63,87)(6,27,55,86)(7,26,56,85)(8,25,57,84)(9,24,58,83)(10,72,98,33)(11,71,99,32)(12,70,91,31)(13,69,92,30)(14,68,93,29)(15,67,94,28)(16,66,95,36)(17,65,96,35)(18,64,97,34)(37,108,54,81)(38,107,46,80)(39,106,47,79)(40,105,48,78)(41,104,49,77)(42,103,50,76)(43,102,51,75)(44,101,52,74)(45,100,53,73)>;

G:=Group( (1,29,37)(2,30,38)(3,31,39)(4,32,40)(5,33,41)(6,34,42)(7,35,43)(8,36,44)(9,28,45)(10,104,19)(11,105,20)(12,106,21)(13,107,22)(14,108,23)(15,100,24)(16,101,25)(17,102,26)(18,103,27)(46,60,69)(47,61,70)(48,62,71)(49,63,72)(50,55,64)(51,56,65)(52,57,66)(53,58,67)(54,59,68)(73,83,94)(74,84,95)(75,85,96)(76,86,97)(77,87,98)(78,88,99)(79,89,91)(80,90,92)(81,82,93), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (1,48,35,59,40,65)(2,49,36,60,41,66)(3,50,28,61,42,67)(4,51,29,62,43,68)(5,52,30,63,44,69)(6,53,31,55,45,70)(7,54,32,56,37,71)(8,46,33,57,38,72)(9,47,34,58,39,64)(10,80,25,98,107,84)(11,81,26,99,108,85)(12,73,27,91,100,86)(13,74,19,92,101,87)(14,75,20,93,102,88)(15,76,21,94,103,89)(16,77,22,95,104,90)(17,78,23,96,105,82)(18,79,24,97,106,83), (1,23,59,82)(2,22,60,90)(3,21,61,89)(4,20,62,88)(5,19,63,87)(6,27,55,86)(7,26,56,85)(8,25,57,84)(9,24,58,83)(10,72,98,33)(11,71,99,32)(12,70,91,31)(13,69,92,30)(14,68,93,29)(15,67,94,28)(16,66,95,36)(17,65,96,35)(18,64,97,34)(37,108,54,81)(38,107,46,80)(39,106,47,79)(40,105,48,78)(41,104,49,77)(42,103,50,76)(43,102,51,75)(44,101,52,74)(45,100,53,73) );

G=PermutationGroup([[(1,29,37),(2,30,38),(3,31,39),(4,32,40),(5,33,41),(6,34,42),(7,35,43),(8,36,44),(9,28,45),(10,104,19),(11,105,20),(12,106,21),(13,107,22),(14,108,23),(15,100,24),(16,101,25),(17,102,26),(18,103,27),(46,60,69),(47,61,70),(48,62,71),(49,63,72),(50,55,64),(51,56,65),(52,57,66),(53,58,67),(54,59,68),(73,83,94),(74,84,95),(75,85,96),(76,86,97),(77,87,98),(78,88,99),(79,89,91),(80,90,92),(81,82,93)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108)], [(1,48,35,59,40,65),(2,49,36,60,41,66),(3,50,28,61,42,67),(4,51,29,62,43,68),(5,52,30,63,44,69),(6,53,31,55,45,70),(7,54,32,56,37,71),(8,46,33,57,38,72),(9,47,34,58,39,64),(10,80,25,98,107,84),(11,81,26,99,108,85),(12,73,27,91,100,86),(13,74,19,92,101,87),(14,75,20,93,102,88),(15,76,21,94,103,89),(16,77,22,95,104,90),(17,78,23,96,105,82),(18,79,24,97,106,83)], [(1,23,59,82),(2,22,60,90),(3,21,61,89),(4,20,62,88),(5,19,63,87),(6,27,55,86),(7,26,56,85),(8,25,57,84),(9,24,58,83),(10,72,98,33),(11,71,99,32),(12,70,91,31),(13,69,92,30),(14,68,93,29),(15,67,94,28),(16,66,95,36),(17,65,96,35),(18,64,97,34),(37,108,54,81),(38,107,46,80),(39,106,47,79),(40,105,48,78),(41,104,49,77),(42,103,50,76),(43,102,51,75),(44,101,52,74),(45,100,53,73)]])

90 conjugacy classes

class 1  2 3A3B3C···3N4A4B6A6B6C···6N9A···9AA12A12B12C12D18A···18AA
order12333···344666···69···91212121218···18
size11112···22727112···22···2272727272···2

90 irreducible representations

dim111111222222222222
type++++--+-
imageC1C2C3C4C6C12S3S3Dic3Dic3C3×S3D9C3×S3C3×Dic3Dic9C3×Dic3C3×D9C3×Dic9
kernelC3×C9⋊Dic3C32×C18C9⋊Dic3C32×C9C3×C18C3×C9C3×C18C32×C6C3×C9C33C18C3×C6C3×C6C9C32C32C6C3
# reps11222431316926921818

Matrix representation of C3×C9⋊Dic3 in GL5(𝔽37)

100000
010000
001000
000260
000026
,
10000
016000
00700
00090
000033
,
360000
010000
002600
00010
00001
,
310000
00100
01000
00001
00010

G:=sub<GL(5,GF(37))| [10,0,0,0,0,0,10,0,0,0,0,0,10,0,0,0,0,0,26,0,0,0,0,0,26],[1,0,0,0,0,0,16,0,0,0,0,0,7,0,0,0,0,0,9,0,0,0,0,0,33],[36,0,0,0,0,0,10,0,0,0,0,0,26,0,0,0,0,0,1,0,0,0,0,0,1],[31,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0] >;

C3×C9⋊Dic3 in GAP, Magma, Sage, TeX

C_3\times C_9\rtimes {\rm Dic}_3
% in TeX

G:=Group("C3xC9:Dic3");
// GroupNames label

G:=SmallGroup(324,96);
// by ID

G=gap.SmallGroup(324,96);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,3171,453,2164,7781]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^9=c^6=1,d^2=c^3,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽