Extensions 1→N→G→Q→1 with N=Dic42 and Q=C2

Direct product G=N×Q with N=Dic42 and Q=C2
dρLabelID
C2×Dic42336C2xDic42336,194

Semidirect products G=N:Q with N=Dic42 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic421C2 = C8⋊D21φ: C2/C1C2 ⊆ Out Dic421682Dic42:1C2336,92
Dic422C2 = D4.D21φ: C2/C1C2 ⊆ Out Dic421684-Dic42:2C2336,102
Dic423C2 = D42D21φ: C2/C1C2 ⊆ Out Dic421684-Dic42:3C2336,199
Dic424C2 = Q8×D21φ: C2/C1C2 ⊆ Out Dic421684-Dic42:4C2336,200
Dic425C2 = C6.D28φ: C2/C1C2 ⊆ Out Dic421684-Dic42:5C2336,34
Dic426C2 = D285S3φ: C2/C1C2 ⊆ Out Dic421684-Dic42:6C2336,138
Dic427C2 = S3×Dic14φ: C2/C1C2 ⊆ Out Dic421684-Dic42:7C2336,140
Dic428C2 = D12.D7φ: C2/C1C2 ⊆ Out Dic421684-Dic42:8C2336,36
Dic429C2 = D7×Dic6φ: C2/C1C2 ⊆ Out Dic421684-Dic42:9C2336,137
Dic4210C2 = D125D7φ: C2/C1C2 ⊆ Out Dic421684-Dic42:10C2336,145
Dic4211C2 = D8411C2φ: trivial image1682Dic42:11C2336,197

Non-split extensions G=N.Q with N=Dic42 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic42.1C2 = Dic84φ: C2/C1C2 ⊆ Out Dic423362-Dic42.1C2336,94
Dic42.2C2 = C217Q16φ: C2/C1C2 ⊆ Out Dic423364-Dic42.2C2336,104
Dic42.3C2 = C3⋊Dic28φ: C2/C1C2 ⊆ Out Dic423364-Dic42.3C2336,39
Dic42.4C2 = C7⋊Dic12φ: C2/C1C2 ⊆ Out Dic423364-Dic42.4C2336,40

׿
×
𝔽