metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: Dic42, C4.D21, C21⋊2Q8, C7⋊2Dic6, C84.1C2, C28.1S3, C12.1D7, C6.8D14, C2.3D42, C14.8D6, C3⋊2Dic14, C42.8C22, Dic21.1C2, SmallGroup(168,34)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic42
G = < a,b | a84=1, b2=a42, bab-1=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 86 43 128)(2 85 44 127)(3 168 45 126)(4 167 46 125)(5 166 47 124)(6 165 48 123)(7 164 49 122)(8 163 50 121)(9 162 51 120)(10 161 52 119)(11 160 53 118)(12 159 54 117)(13 158 55 116)(14 157 56 115)(15 156 57 114)(16 155 58 113)(17 154 59 112)(18 153 60 111)(19 152 61 110)(20 151 62 109)(21 150 63 108)(22 149 64 107)(23 148 65 106)(24 147 66 105)(25 146 67 104)(26 145 68 103)(27 144 69 102)(28 143 70 101)(29 142 71 100)(30 141 72 99)(31 140 73 98)(32 139 74 97)(33 138 75 96)(34 137 76 95)(35 136 77 94)(36 135 78 93)(37 134 79 92)(38 133 80 91)(39 132 81 90)(40 131 82 89)(41 130 83 88)(42 129 84 87)
G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,86,43,128)(2,85,44,127)(3,168,45,126)(4,167,46,125)(5,166,47,124)(6,165,48,123)(7,164,49,122)(8,163,50,121)(9,162,51,120)(10,161,52,119)(11,160,53,118)(12,159,54,117)(13,158,55,116)(14,157,56,115)(15,156,57,114)(16,155,58,113)(17,154,59,112)(18,153,60,111)(19,152,61,110)(20,151,62,109)(21,150,63,108)(22,149,64,107)(23,148,65,106)(24,147,66,105)(25,146,67,104)(26,145,68,103)(27,144,69,102)(28,143,70,101)(29,142,71,100)(30,141,72,99)(31,140,73,98)(32,139,74,97)(33,138,75,96)(34,137,76,95)(35,136,77,94)(36,135,78,93)(37,134,79,92)(38,133,80,91)(39,132,81,90)(40,131,82,89)(41,130,83,88)(42,129,84,87)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,86,43,128)(2,85,44,127)(3,168,45,126)(4,167,46,125)(5,166,47,124)(6,165,48,123)(7,164,49,122)(8,163,50,121)(9,162,51,120)(10,161,52,119)(11,160,53,118)(12,159,54,117)(13,158,55,116)(14,157,56,115)(15,156,57,114)(16,155,58,113)(17,154,59,112)(18,153,60,111)(19,152,61,110)(20,151,62,109)(21,150,63,108)(22,149,64,107)(23,148,65,106)(24,147,66,105)(25,146,67,104)(26,145,68,103)(27,144,69,102)(28,143,70,101)(29,142,71,100)(30,141,72,99)(31,140,73,98)(32,139,74,97)(33,138,75,96)(34,137,76,95)(35,136,77,94)(36,135,78,93)(37,134,79,92)(38,133,80,91)(39,132,81,90)(40,131,82,89)(41,130,83,88)(42,129,84,87) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,86,43,128),(2,85,44,127),(3,168,45,126),(4,167,46,125),(5,166,47,124),(6,165,48,123),(7,164,49,122),(8,163,50,121),(9,162,51,120),(10,161,52,119),(11,160,53,118),(12,159,54,117),(13,158,55,116),(14,157,56,115),(15,156,57,114),(16,155,58,113),(17,154,59,112),(18,153,60,111),(19,152,61,110),(20,151,62,109),(21,150,63,108),(22,149,64,107),(23,148,65,106),(24,147,66,105),(25,146,67,104),(26,145,68,103),(27,144,69,102),(28,143,70,101),(29,142,71,100),(30,141,72,99),(31,140,73,98),(32,139,74,97),(33,138,75,96),(34,137,76,95),(35,136,77,94),(36,135,78,93),(37,134,79,92),(38,133,80,91),(39,132,81,90),(40,131,82,89),(41,130,83,88),(42,129,84,87)]])
Dic42 is a maximal subgroup of
C6.D28 D12.D7 C3⋊Dic28 C7⋊Dic12 C8⋊D21 Dic84 D4.D21 C21⋊7Q16 D7×Dic6 D28⋊5S3 S3×Dic14 D12⋊5D7 D84⋊11C2 D4⋊2D21 Q8×D21
Dic42 is a maximal quotient of
C42.4Q8 C84⋊C4
45 conjugacy classes
class | 1 | 2 | 3 | 4A | 4B | 4C | 6 | 7A | 7B | 7C | 12A | 12B | 14A | 14B | 14C | 21A | ··· | 21F | 28A | ··· | 28F | 42A | ··· | 42F | 84A | ··· | 84L |
order | 1 | 2 | 3 | 4 | 4 | 4 | 6 | 7 | 7 | 7 | 12 | 12 | 14 | 14 | 14 | 21 | ··· | 21 | 28 | ··· | 28 | 42 | ··· | 42 | 84 | ··· | 84 |
size | 1 | 1 | 2 | 2 | 42 | 42 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
45 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | + | - | + | + | - | + | - |
image | C1 | C2 | C2 | S3 | Q8 | D6 | D7 | Dic6 | D14 | D21 | Dic14 | D42 | Dic42 |
kernel | Dic42 | Dic21 | C84 | C28 | C21 | C14 | C12 | C7 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 3 | 6 | 6 | 6 | 12 |
Matrix representation of Dic42 ►in GL2(𝔽337) generated by
144 | 120 |
133 | 277 |
126 | 323 |
99 | 211 |
G:=sub<GL(2,GF(337))| [144,133,120,277],[126,99,323,211] >;
Dic42 in GAP, Magma, Sage, TeX
{\rm Dic}_{42}
% in TeX
G:=Group("Dic42");
// GroupNames label
G:=SmallGroup(168,34);
// by ID
G=gap.SmallGroup(168,34);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-7,20,61,26,323,3604]);
// Polycyclic
G:=Group<a,b|a^84=1,b^2=a^42,b*a*b^-1=a^-1>;
// generators/relations
Export