Extensions 1→N→G→Q→1 with N=C2 and Q=C217D4

Direct product G=N×Q with N=C2 and Q=C217D4
dρLabelID
C2×C217D4168C2xC21:7D4336,203


Non-split extensions G=N.Q with N=C2 and Q=C217D4
extensionφ:Q→Aut NdρLabelID
C2.1(C217D4) = C42.4Q8central extension (φ=1)336C2.1(C21:7D4)336,98
C2.2(C217D4) = C2.D84central extension (φ=1)168C2.2(C21:7D4)336,100
C2.3(C217D4) = C42.38D4central extension (φ=1)168C2.3(C21:7D4)336,105
C2.4(C217D4) = D4⋊D21central stem extension (φ=1)1684+C2.4(C21:7D4)336,101
C2.5(C217D4) = D4.D21central stem extension (φ=1)1684-C2.5(C21:7D4)336,102
C2.6(C217D4) = Q82D21central stem extension (φ=1)1684+C2.6(C21:7D4)336,103
C2.7(C217D4) = C217Q16central stem extension (φ=1)3364-C2.7(C21:7D4)336,104

׿
×
𝔽