Extensions 1→N→G→Q→1 with N=Dic3 and Q=D14

Direct product G=NxQ with N=Dic3 and Q=D14
dρLabelID
C2xDic3xD7168C2xDic3xD7336,151

Semidirect products G=N:Q with N=Dic3 and Q=D14
extensionφ:Q→Out NdρLabelID
Dic3:1D14 = D7xC3:D4φ: D14/D7C2 ⊆ Out Dic3844Dic3:1D14336,161
Dic3:2D14 = D6:D14φ: D14/D7C2 ⊆ Out Dic3844+Dic3:2D14336,163
Dic3:3D14 = S3xD28φ: D14/C14C2 ⊆ Out Dic3844+Dic3:3D14336,149
Dic3:4D14 = C2xC3:D28φ: D14/C14C2 ⊆ Out Dic3168Dic3:4D14336,158
Dic3:5D14 = C4xS3xD7φ: trivial image844Dic3:5D14336,147
Dic3:6D14 = C2xD21:C4φ: trivial image168Dic3:6D14336,156

Non-split extensions G=N.Q with N=Dic3 and Q=D14
extensionφ:Q→Out NdρLabelID
Dic3.1D14 = D7xDic6φ: D14/D7C2 ⊆ Out Dic31684-Dic3.1D14336,137
Dic3.2D14 = D28:S3φ: D14/D7C2 ⊆ Out Dic31684Dic3.2D14336,139
Dic3.3D14 = D21:Q8φ: D14/D7C2 ⊆ Out Dic31684Dic3.3D14336,143
Dic3.4D14 = D14.D6φ: D14/D7C2 ⊆ Out Dic31684+Dic3.4D14336,146
Dic3.5D14 = C42.C23φ: D14/D7C2 ⊆ Out Dic31684-Dic3.5D14336,153
Dic3.6D14 = Dic3.D14φ: D14/D7C2 ⊆ Out Dic31684Dic3.6D14336,155
Dic3.7D14 = S3xDic14φ: D14/C14C2 ⊆ Out Dic31684-Dic3.7D14336,140
Dic3.8D14 = D6.D14φ: D14/C14C2 ⊆ Out Dic31684Dic3.8D14336,144
Dic3.9D14 = C2xC21:Q8φ: D14/C14C2 ⊆ Out Dic3336Dic3.9D14336,160
Dic3.10D14 = D28:5S3φ: trivial image1684-Dic3.10D14336,138
Dic3.11D14 = D84:C2φ: trivial image1684+Dic3.11D14336,142
Dic3.12D14 = Dic7.D6φ: trivial image1684Dic3.12D14336,152

׿
x
:
Z
F
o
wr
Q
<