Extensions 1→N→G→Q→1 with N=He3 and Q=Dic3

Direct product G=N×Q with N=He3 and Q=Dic3
dρLabelID
Dic3×He3366Dic3xHe3324,93

Semidirect products G=N:Q with N=He3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
He31Dic3 = C33⋊C12φ: Dic3/C2S3 ⊆ Out He3366-He3:1Dic3324,14
He32Dic3 = C33⋊Dic3φ: Dic3/C2S3 ⊆ Out He3366-He3:2Dic3324,22
He33Dic3 = He3⋊Dic3φ: Dic3/C2S3 ⊆ Out He31086-He3:3Dic3324,24
He34Dic3 = He34Dic3φ: Dic3/C3C4 ⊆ Out He3186He3:4Dic3324,113
He35Dic3 = C334C12φ: Dic3/C6C2 ⊆ Out He3108He3:5Dic3324,98
He36Dic3 = He36Dic3φ: Dic3/C6C2 ⊆ Out He3366He3:6Dic3324,104

Non-split extensions G=N.Q with N=He3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
He3.1Dic3 = He3.Dic3φ: Dic3/C2S3 ⊆ Out He31086-He3.1Dic3324,16
He3.2Dic3 = He3.2Dic3φ: Dic3/C2S3 ⊆ Out He31086-He3.2Dic3324,18
He3.3Dic3 = He3.3Dic3φ: Dic3/C2S3 ⊆ Out He31086-He3.3Dic3324,23
He3.4Dic3 = He3.4Dic3φ: Dic3/C6C2 ⊆ Out He31086-He3.4Dic3324,101

׿
×
𝔽