Copied to
clipboard

G = He3⋊Dic3order 324 = 22·34

3rd semidirect product of He3 and Dic3 acting via Dic3/C2=S3

non-abelian, supersoluble, monomial

Aliases: He33Dic3, (C3×C18).8S3, (C3×C9)⋊6Dic3, He3⋊C33C4, (C2×He3).6S3, C2.(He3⋊S3), C6.4(He3⋊C2), C3.4(He33C4), C32.3(C3⋊Dic3), (C3×C6).3(C3⋊S3), (C2×He3⋊C3).3C2, SmallGroup(324,24)

Series: Derived Chief Lower central Upper central

C1C32He3⋊C3 — He3⋊Dic3
C1C3C32He3He3⋊C3C2×He3⋊C3 — He3⋊Dic3
He3⋊C3 — He3⋊Dic3
C1C2

Generators and relations for He3⋊Dic3
 G = < a,b,c,d,e | a3=b3=c3=d6=1, e2=d3, dad-1=ab=ba, cac-1=ab-1, ae=ea, bc=cb, bd=db, ebe-1=b-1, dcd-1=a-1c, ece-1=c-1, ede-1=d-1 >

3C3
9C3
9C3
9C3
27C4
3C6
9C6
9C6
9C6
3C32
3C9
3C32
3C32
9Dic3
27C12
27Dic3
27Dic3
27Dic3
3C3×C6
3C3×C6
3C18
3C3×C6
3C3⋊Dic3
3C3⋊Dic3
3Dic9
3C3⋊Dic3
9C3×Dic3
3C32⋊C12
3C32⋊C12
3C32⋊C12
3C3×Dic9

Character table of He3⋊Dic3

 class 123A3B3C3D3E3F4A4B6A6B6C6D6E6F9A9B9C12A12B12C12D18A18B18C
 size 11233181818272723318181866627272727666
ρ111111111111111111111111111    trivial
ρ211111111-1-1111111111-1-1-1-1111    linear of order 2
ρ31-1111111-ii-1-1-1-1-1-1111-iii-i-1-1-1    linear of order 4
ρ41-1111111i-i-1-1-1-1-1-1111i-i-ii-1-1-1    linear of order 4
ρ522222-12-1002222-1-1-1-1-10000-1-1-1    orthogonal lifted from S3
ρ622222-1-1-100222-1-1-12220000222    orthogonal lifted from S3
ρ722222-1-1200222-12-1-1-1-10000-1-1-1    orthogonal lifted from S3
ρ8222222-1-100222-1-12-1-1-10000-1-1-1    orthogonal lifted from S3
ρ92-2222-12-100-2-2-2-211-1-1-10000111    symplectic lifted from Dic3, Schur index 2
ρ102-2222-1-1200-2-2-21-21-1-1-10000111    symplectic lifted from Dic3, Schur index 2
ρ112-22222-1-100-2-2-211-2-1-1-10000111    symplectic lifted from Dic3, Schur index 2
ρ122-2222-1-1-100-2-2-21112220000-2-2-2    symplectic lifted from Dic3, Schur index 2
ρ13333-3+3-3/2-3-3-3/2000-1-13-3-3-3/2-3+3-3/2000000ζ6ζ65ζ6ζ65000    complex lifted from He3⋊C2
ρ14333-3-3-3/2-3+3-3/2000113-3+3-3/2-3-3-3/2000000ζ3ζ32ζ3ζ32000    complex lifted from He3⋊C2
ρ15333-3-3-3/2-3+3-3/2000-1-13-3+3-3/2-3-3-3/2000000ζ65ζ6ζ65ζ6000    complex lifted from He3⋊C2
ρ16333-3+3-3/2-3-3-3/2000113-3-3-3/2-3+3-3/2000000ζ32ζ3ζ32ζ3000    complex lifted from He3⋊C2
ρ173-33-3-3-3/2-3+3-3/2000-ii-33-3-3/23+3-3/2000000ζ43ζ3ζ4ζ32ζ4ζ3ζ43ζ32000    complex lifted from He33C4
ρ183-33-3+3-3/2-3-3-3/2000-ii-33+3-3/23-3-3/2000000ζ43ζ32ζ4ζ3ζ4ζ32ζ43ζ3000    complex lifted from He33C4
ρ193-33-3+3-3/2-3-3-3/2000i-i-33+3-3/23-3-3/2000000ζ4ζ32ζ43ζ3ζ43ζ32ζ4ζ3000    complex lifted from He33C4
ρ203-33-3-3-3/2-3+3-3/2000i-i-33-3-3/23+3-3/2000000ζ4ζ3ζ43ζ32ζ43ζ3ζ4ζ32000    complex lifted from He33C4
ρ2166-30000000-300000ζ95+2ζ94929989492998+2ζ97949200009894929ζ95+2ζ9492998+2ζ979492    orthogonal lifted from He3⋊S3
ρ2266-30000000-300000989492998+2ζ979492ζ95+2ζ94929000098+2ζ9794929894929ζ95+2ζ94929    orthogonal lifted from He3⋊S3
ρ2366-30000000-30000098+2ζ979492ζ95+2ζ9492998949290000ζ95+2ζ9492998+2ζ9794929894929    orthogonal lifted from He3⋊S3
ρ246-6-30000000300000989492998+2ζ979492ζ95+2ζ949290000ζ989492+2ζ99594929ζ989794+2ζ92    symplectic faithful, Schur index 2
ρ256-6-3000000030000098+2ζ979492ζ95+2ζ9492998949290000ζ989794+2ζ92ζ989492+2ζ99594929    symplectic faithful, Schur index 2
ρ266-6-30000000300000ζ95+2ζ94929989492998+2ζ97949200009594929ζ989794+2ζ92ζ989492+2ζ9    symplectic faithful, Schur index 2

Smallest permutation representation of He3⋊Dic3
On 108 points
Generators in S108
(1 51 92)(2 35 59)(3 67 76)(4 54 95)(5 32 56)(6 70 73)(7 87 63)(8 37 104)(9 20 47)(10 90 66)(11 40 107)(12 23 44)(13 53 60)(14 31 77)(15 69 96)(16 50 57)(17 34 74)(18 72 93)(19 64 101)(21 106 28)(22 61 98)(24 103 25)(26 88 46)(27 38 65)(29 85 43)(30 41 62)(33 91 79)(36 94 82)(39 48 97)(42 45 100)(49 78 84)(52 75 81)(55 83 68)(58 80 71)(86 108 99)(89 105 102)
(1 17 80)(2 18 81)(3 13 82)(4 14 83)(5 15 84)(6 16 79)(7 100 25)(8 101 26)(9 102 27)(10 97 28)(11 98 29)(12 99 30)(19 88 37)(20 89 38)(21 90 39)(22 85 40)(23 86 41)(24 87 42)(31 68 54)(32 69 49)(33 70 50)(34 71 51)(35 72 52)(36 67 53)(43 107 61)(44 108 62)(45 103 63)(46 104 64)(47 105 65)(48 106 66)(55 95 77)(56 96 78)(57 91 73)(58 92 74)(59 93 75)(60 94 76)
(2 59 52)(3 53 76)(5 56 49)(6 50 73)(7 103 87)(8 37 64)(9 27 102)(10 106 90)(11 40 61)(12 30 99)(13 36 60)(15 96 32)(16 33 57)(18 93 35)(19 46 101)(21 28 48)(22 43 98)(24 25 45)(26 88 104)(29 85 107)(31 68 54)(34 71 51)(39 97 66)(42 100 63)(44 108 62)(47 105 65)(55 77 95)(58 74 92)(67 94 82)(69 84 78)(70 91 79)(72 81 75)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)
(1 41 4 38)(2 40 5 37)(3 39 6 42)(7 60 10 57)(8 59 11 56)(9 58 12 55)(13 90 16 87)(14 89 17 86)(15 88 18 85)(19 81 22 84)(20 80 23 83)(21 79 24 82)(25 94 28 91)(26 93 29 96)(27 92 30 95)(31 105 34 108)(32 104 35 107)(33 103 36 106)(43 69 46 72)(44 68 47 71)(45 67 48 70)(49 64 52 61)(50 63 53 66)(51 62 54 65)(73 100 76 97)(74 99 77 102)(75 98 78 101)

G:=sub<Sym(108)| (1,51,92)(2,35,59)(3,67,76)(4,54,95)(5,32,56)(6,70,73)(7,87,63)(8,37,104)(9,20,47)(10,90,66)(11,40,107)(12,23,44)(13,53,60)(14,31,77)(15,69,96)(16,50,57)(17,34,74)(18,72,93)(19,64,101)(21,106,28)(22,61,98)(24,103,25)(26,88,46)(27,38,65)(29,85,43)(30,41,62)(33,91,79)(36,94,82)(39,48,97)(42,45,100)(49,78,84)(52,75,81)(55,83,68)(58,80,71)(86,108,99)(89,105,102), (1,17,80)(2,18,81)(3,13,82)(4,14,83)(5,15,84)(6,16,79)(7,100,25)(8,101,26)(9,102,27)(10,97,28)(11,98,29)(12,99,30)(19,88,37)(20,89,38)(21,90,39)(22,85,40)(23,86,41)(24,87,42)(31,68,54)(32,69,49)(33,70,50)(34,71,51)(35,72,52)(36,67,53)(43,107,61)(44,108,62)(45,103,63)(46,104,64)(47,105,65)(48,106,66)(55,95,77)(56,96,78)(57,91,73)(58,92,74)(59,93,75)(60,94,76), (2,59,52)(3,53,76)(5,56,49)(6,50,73)(7,103,87)(8,37,64)(9,27,102)(10,106,90)(11,40,61)(12,30,99)(13,36,60)(15,96,32)(16,33,57)(18,93,35)(19,46,101)(21,28,48)(22,43,98)(24,25,45)(26,88,104)(29,85,107)(31,68,54)(34,71,51)(39,97,66)(42,100,63)(44,108,62)(47,105,65)(55,77,95)(58,74,92)(67,94,82)(69,84,78)(70,91,79)(72,81,75), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108), (1,41,4,38)(2,40,5,37)(3,39,6,42)(7,60,10,57)(8,59,11,56)(9,58,12,55)(13,90,16,87)(14,89,17,86)(15,88,18,85)(19,81,22,84)(20,80,23,83)(21,79,24,82)(25,94,28,91)(26,93,29,96)(27,92,30,95)(31,105,34,108)(32,104,35,107)(33,103,36,106)(43,69,46,72)(44,68,47,71)(45,67,48,70)(49,64,52,61)(50,63,53,66)(51,62,54,65)(73,100,76,97)(74,99,77,102)(75,98,78,101)>;

G:=Group( (1,51,92)(2,35,59)(3,67,76)(4,54,95)(5,32,56)(6,70,73)(7,87,63)(8,37,104)(9,20,47)(10,90,66)(11,40,107)(12,23,44)(13,53,60)(14,31,77)(15,69,96)(16,50,57)(17,34,74)(18,72,93)(19,64,101)(21,106,28)(22,61,98)(24,103,25)(26,88,46)(27,38,65)(29,85,43)(30,41,62)(33,91,79)(36,94,82)(39,48,97)(42,45,100)(49,78,84)(52,75,81)(55,83,68)(58,80,71)(86,108,99)(89,105,102), (1,17,80)(2,18,81)(3,13,82)(4,14,83)(5,15,84)(6,16,79)(7,100,25)(8,101,26)(9,102,27)(10,97,28)(11,98,29)(12,99,30)(19,88,37)(20,89,38)(21,90,39)(22,85,40)(23,86,41)(24,87,42)(31,68,54)(32,69,49)(33,70,50)(34,71,51)(35,72,52)(36,67,53)(43,107,61)(44,108,62)(45,103,63)(46,104,64)(47,105,65)(48,106,66)(55,95,77)(56,96,78)(57,91,73)(58,92,74)(59,93,75)(60,94,76), (2,59,52)(3,53,76)(5,56,49)(6,50,73)(7,103,87)(8,37,64)(9,27,102)(10,106,90)(11,40,61)(12,30,99)(13,36,60)(15,96,32)(16,33,57)(18,93,35)(19,46,101)(21,28,48)(22,43,98)(24,25,45)(26,88,104)(29,85,107)(31,68,54)(34,71,51)(39,97,66)(42,100,63)(44,108,62)(47,105,65)(55,77,95)(58,74,92)(67,94,82)(69,84,78)(70,91,79)(72,81,75), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108), (1,41,4,38)(2,40,5,37)(3,39,6,42)(7,60,10,57)(8,59,11,56)(9,58,12,55)(13,90,16,87)(14,89,17,86)(15,88,18,85)(19,81,22,84)(20,80,23,83)(21,79,24,82)(25,94,28,91)(26,93,29,96)(27,92,30,95)(31,105,34,108)(32,104,35,107)(33,103,36,106)(43,69,46,72)(44,68,47,71)(45,67,48,70)(49,64,52,61)(50,63,53,66)(51,62,54,65)(73,100,76,97)(74,99,77,102)(75,98,78,101) );

G=PermutationGroup([[(1,51,92),(2,35,59),(3,67,76),(4,54,95),(5,32,56),(6,70,73),(7,87,63),(8,37,104),(9,20,47),(10,90,66),(11,40,107),(12,23,44),(13,53,60),(14,31,77),(15,69,96),(16,50,57),(17,34,74),(18,72,93),(19,64,101),(21,106,28),(22,61,98),(24,103,25),(26,88,46),(27,38,65),(29,85,43),(30,41,62),(33,91,79),(36,94,82),(39,48,97),(42,45,100),(49,78,84),(52,75,81),(55,83,68),(58,80,71),(86,108,99),(89,105,102)], [(1,17,80),(2,18,81),(3,13,82),(4,14,83),(5,15,84),(6,16,79),(7,100,25),(8,101,26),(9,102,27),(10,97,28),(11,98,29),(12,99,30),(19,88,37),(20,89,38),(21,90,39),(22,85,40),(23,86,41),(24,87,42),(31,68,54),(32,69,49),(33,70,50),(34,71,51),(35,72,52),(36,67,53),(43,107,61),(44,108,62),(45,103,63),(46,104,64),(47,105,65),(48,106,66),(55,95,77),(56,96,78),(57,91,73),(58,92,74),(59,93,75),(60,94,76)], [(2,59,52),(3,53,76),(5,56,49),(6,50,73),(7,103,87),(8,37,64),(9,27,102),(10,106,90),(11,40,61),(12,30,99),(13,36,60),(15,96,32),(16,33,57),(18,93,35),(19,46,101),(21,28,48),(22,43,98),(24,25,45),(26,88,104),(29,85,107),(31,68,54),(34,71,51),(39,97,66),(42,100,63),(44,108,62),(47,105,65),(55,77,95),(58,74,92),(67,94,82),(69,84,78),(70,91,79),(72,81,75)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108)], [(1,41,4,38),(2,40,5,37),(3,39,6,42),(7,60,10,57),(8,59,11,56),(9,58,12,55),(13,90,16,87),(14,89,17,86),(15,88,18,85),(19,81,22,84),(20,80,23,83),(21,79,24,82),(25,94,28,91),(26,93,29,96),(27,92,30,95),(31,105,34,108),(32,104,35,107),(33,103,36,106),(43,69,46,72),(44,68,47,71),(45,67,48,70),(49,64,52,61),(50,63,53,66),(51,62,54,65),(73,100,76,97),(74,99,77,102),(75,98,78,101)]])

Matrix representation of He3⋊Dic3 in GL9(𝔽37)

1000000000
0100000000
0010000000
0000036100
0001010353600
0000027010
0000027001
0000011000
0001011000
,
100000000
010000000
001000000
0000360000
0001360000
000100363600
0000271000
000260003636
0000110010
,
100000000
0100000000
0026000000
000100000
000010000
000000100
0001010363600
0002626003636
000000010
,
0360000000
0036000000
3600000000
0003231131617
000711711266
000111010152812
000320219111
00025616282636
00025263617925
,
3100000000
0031000000
0310000000
00032320000
0002750000
00024032500
000112410500
00018000325
000361800105

G:=sub<GL(9,GF(37))| [10,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,10,0,0,0,1,0,0,0,0,10,0,0,0,0,0,0,0,36,35,27,27,11,11,0,0,0,1,36,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,10,0,26,0,0,0,0,36,36,0,27,0,11,0,0,0,0,0,36,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,0,0,36,1,0,0,0,0,0,0,0,36,0],[1,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,26,0,0,0,0,0,0,0,0,0,1,0,0,10,26,0,0,0,0,0,1,0,10,26,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,36,0,0,0,0,0,0,0,0,0,36,1,0,0,0,0,0,0,0,36,0],[0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,0,0,3,7,11,32,25,25,0,0,0,23,1,10,0,6,26,0,0,0,11,17,10,21,16,36,0,0,0,31,11,15,9,28,17,0,0,0,6,26,28,11,26,9,0,0,0,17,6,12,1,36,25],[31,0,0,0,0,0,0,0,0,0,0,31,0,0,0,0,0,0,0,31,0,0,0,0,0,0,0,0,0,0,32,27,24,11,18,36,0,0,0,32,5,0,24,0,18,0,0,0,0,0,32,10,0,0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0,0,32,10,0,0,0,0,0,0,0,5,5] >;

He3⋊Dic3 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes {\rm Dic}_3
% in TeX

G:=Group("He3:Dic3");
// GroupNames label

G:=SmallGroup(324,24);
// by ID

G=gap.SmallGroup(324,24);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,12,146,579,303,1096,652,7781]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^6=1,e^2=d^3,d*a*d^-1=a*b=b*a,c*a*c^-1=a*b^-1,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,d*c*d^-1=a^-1*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of He3⋊Dic3 in TeX
Character table of He3⋊Dic3 in TeX

׿
×
𝔽