Extensions 1→N→G→Q→1 with N=D4×C21 and Q=C2

Direct product G=N×Q with N=D4×C21 and Q=C2
dρLabelID
D4×C42168D4xC42336,205

Semidirect products G=N:Q with N=D4×C21 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C21)⋊1C2 = D4⋊D21φ: C2/C1C2 ⊆ Out D4×C211684+(D4xC21):1C2336,101
(D4×C21)⋊2C2 = D4×D21φ: C2/C1C2 ⊆ Out D4×C21844+(D4xC21):2C2336,198
(D4×C21)⋊3C2 = D42D21φ: C2/C1C2 ⊆ Out D4×C211684-(D4xC21):3C2336,199
(D4×C21)⋊4C2 = C3×D4⋊D7φ: C2/C1C2 ⊆ Out D4×C211684(D4xC21):4C2336,69
(D4×C21)⋊5C2 = C3×D4×D7φ: C2/C1C2 ⊆ Out D4×C21844(D4xC21):5C2336,178
(D4×C21)⋊6C2 = C3×D42D7φ: C2/C1C2 ⊆ Out D4×C211684(D4xC21):6C2336,179
(D4×C21)⋊7C2 = C7×D4⋊S3φ: C2/C1C2 ⊆ Out D4×C211684(D4xC21):7C2336,85
(D4×C21)⋊8C2 = S3×C7×D4φ: C2/C1C2 ⊆ Out D4×C21844(D4xC21):8C2336,188
(D4×C21)⋊9C2 = C7×D42S3φ: C2/C1C2 ⊆ Out D4×C211684(D4xC21):9C2336,189
(D4×C21)⋊10C2 = D8×C21φ: C2/C1C2 ⊆ Out D4×C211682(D4xC21):10C2336,111
(D4×C21)⋊11C2 = C4○D4×C21φ: trivial image1682(D4xC21):11C2336,207

Non-split extensions G=N.Q with N=D4×C21 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C21).1C2 = D4.D21φ: C2/C1C2 ⊆ Out D4×C211684-(D4xC21).1C2336,102
(D4×C21).2C2 = C3×D4.D7φ: C2/C1C2 ⊆ Out D4×C211684(D4xC21).2C2336,70
(D4×C21).3C2 = C7×D4.S3φ: C2/C1C2 ⊆ Out D4×C211684(D4xC21).3C2336,86
(D4×C21).4C2 = SD16×C21φ: C2/C1C2 ⊆ Out D4×C211682(D4xC21).4C2336,112

׿
×
𝔽