Extensions 1→N→G→Q→1 with N=A4×C14 and Q=C2

Direct product G=N×Q with N=A4×C14 and Q=C2
dρLabelID
A4×C2×C1484A4xC2xC14336,221

Semidirect products G=N:Q with N=A4×C14 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4×C14)⋊1C2 = C2×C7⋊S4φ: C2/C1C2 ⊆ Out A4×C14426+(A4xC14):1C2336,215
(A4×C14)⋊2C2 = C2×A4×D7φ: C2/C1C2 ⊆ Out A4×C14426+(A4xC14):2C2336,217
(A4×C14)⋊3C2 = C14×S4φ: C2/C1C2 ⊆ Out A4×C14423(A4xC14):3C2336,214

Non-split extensions G=N.Q with N=A4×C14 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4×C14).1C2 = A4⋊Dic7φ: C2/C1C2 ⊆ Out A4×C14846-(A4xC14).1C2336,120
(A4×C14).2C2 = A4×Dic7φ: C2/C1C2 ⊆ Out A4×C14846-(A4xC14).2C2336,133
(A4×C14).3C2 = C7×A4⋊C4φ: C2/C1C2 ⊆ Out A4×C14843(A4xC14).3C2336,117
(A4×C14).4C2 = A4×C28φ: trivial image843(A4xC14).4C2336,168

׿
×
𝔽