Copied to
clipboard

G = A4×Dic7order 336 = 24·3·7

Direct product of A4 and Dic7

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×Dic7, C73(C4×A4), (C7×A4)⋊2C4, C2.1(A4×D7), (C2×C14)⋊1C12, C23.(C3×D7), C14.9(C2×A4), (C2×A4).2D7, C22⋊(C3×Dic7), (A4×C14).2C2, (C22×C14).1C6, (C22×Dic7)⋊1C3, SmallGroup(336,133)

Series: Derived Chief Lower central Upper central

C1C2×C14 — A4×Dic7
C1C7C2×C14C22×C14A4×C14 — A4×Dic7
C2×C14 — A4×Dic7
C1C2

Generators and relations for A4×Dic7
 G = < a,b,c,d,e | a2=b2=c3=d14=1, e2=d7, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

3C2
3C2
4C3
3C22
3C22
7C4
21C4
4C6
3C14
3C14
4C21
21C2×C4
21C2×C4
28C12
3C2×C14
3Dic7
3C2×C14
4C42
7C22×C4
3C2×Dic7
3C2×Dic7
4C3×Dic7
7C4×A4

Smallest permutation representation of A4×Dic7
On 84 points
Generators in S84
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)
(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(57 64)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)
(1 42 28)(2 29 15)(3 30 16)(4 31 17)(5 32 18)(6 33 19)(7 34 20)(8 35 21)(9 36 22)(10 37 23)(11 38 24)(12 39 25)(13 40 26)(14 41 27)(43 78 64)(44 79 65)(45 80 66)(46 81 67)(47 82 68)(48 83 69)(49 84 70)(50 71 57)(51 72 58)(52 73 59)(53 74 60)(54 75 61)(55 76 62)(56 77 63)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 50 8 43)(2 49 9 56)(3 48 10 55)(4 47 11 54)(5 46 12 53)(6 45 13 52)(7 44 14 51)(15 70 22 63)(16 69 23 62)(17 68 24 61)(18 67 25 60)(19 66 26 59)(20 65 27 58)(21 64 28 57)(29 84 36 77)(30 83 37 76)(31 82 38 75)(32 81 39 74)(33 80 40 73)(34 79 41 72)(35 78 42 71)

G:=sub<Sym(84)| (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84), (15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84), (1,42,28)(2,29,15)(3,30,16)(4,31,17)(5,32,18)(6,33,19)(7,34,20)(8,35,21)(9,36,22)(10,37,23)(11,38,24)(12,39,25)(13,40,26)(14,41,27)(43,78,64)(44,79,65)(45,80,66)(46,81,67)(47,82,68)(48,83,69)(49,84,70)(50,71,57)(51,72,58)(52,73,59)(53,74,60)(54,75,61)(55,76,62)(56,77,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,50,8,43)(2,49,9,56)(3,48,10,55)(4,47,11,54)(5,46,12,53)(6,45,13,52)(7,44,14,51)(15,70,22,63)(16,69,23,62)(17,68,24,61)(18,67,25,60)(19,66,26,59)(20,65,27,58)(21,64,28,57)(29,84,36,77)(30,83,37,76)(31,82,38,75)(32,81,39,74)(33,80,40,73)(34,79,41,72)(35,78,42,71)>;

G:=Group( (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84), (15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84), (1,42,28)(2,29,15)(3,30,16)(4,31,17)(5,32,18)(6,33,19)(7,34,20)(8,35,21)(9,36,22)(10,37,23)(11,38,24)(12,39,25)(13,40,26)(14,41,27)(43,78,64)(44,79,65)(45,80,66)(46,81,67)(47,82,68)(48,83,69)(49,84,70)(50,71,57)(51,72,58)(52,73,59)(53,74,60)(54,75,61)(55,76,62)(56,77,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,50,8,43)(2,49,9,56)(3,48,10,55)(4,47,11,54)(5,46,12,53)(6,45,13,52)(7,44,14,51)(15,70,22,63)(16,69,23,62)(17,68,24,61)(18,67,25,60)(19,66,26,59)(20,65,27,58)(21,64,28,57)(29,84,36,77)(30,83,37,76)(31,82,38,75)(32,81,39,74)(33,80,40,73)(34,79,41,72)(35,78,42,71) );

G=PermutationGroup([[(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84)], [(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(57,64),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84)], [(1,42,28),(2,29,15),(3,30,16),(4,31,17),(5,32,18),(6,33,19),(7,34,20),(8,35,21),(9,36,22),(10,37,23),(11,38,24),(12,39,25),(13,40,26),(14,41,27),(43,78,64),(44,79,65),(45,80,66),(46,81,67),(47,82,68),(48,83,69),(49,84,70),(50,71,57),(51,72,58),(52,73,59),(53,74,60),(54,75,61),(55,76,62),(56,77,63)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,50,8,43),(2,49,9,56),(3,48,10,55),(4,47,11,54),(5,46,12,53),(6,45,13,52),(7,44,14,51),(15,70,22,63),(16,69,23,62),(17,68,24,61),(18,67,25,60),(19,66,26,59),(20,65,27,58),(21,64,28,57),(29,84,36,77),(30,83,37,76),(31,82,38,75),(32,81,39,74),(33,80,40,73),(34,79,41,72),(35,78,42,71)]])

40 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A6B7A7B7C12A12B12C12D14A14B14C14D···14I21A···21F42A···42F
order1222334444667771212121214141414···1421···2142···42
size11334477212144222282828282226···68···88···8

40 irreducible representations

dim111111222233366
type+++-+++-
imageC1C2C3C4C6C12D7Dic7C3×D7C3×Dic7A4C2×A4C4×A4A4×D7A4×Dic7
kernelA4×Dic7A4×C14C22×Dic7C7×A4C22×C14C2×C14C2×A4A4C23C22Dic7C14C7C2C1
# reps112224336611233

Matrix representation of A4×Dic7 in GL5(𝔽337)

10000
01000
0033600
00010
000131336
,
10000
01000
0033600
0003360
001312061
,
1280000
0128000
00209128227
0020900
0000128
,
227336000
78304000
00100
00010
00001
,
214162000
202123000
00100
00010
00001

G:=sub<GL(5,GF(337))| [1,0,0,0,0,0,1,0,0,0,0,0,336,0,0,0,0,0,1,131,0,0,0,0,336],[1,0,0,0,0,0,1,0,0,0,0,0,336,0,131,0,0,0,336,206,0,0,0,0,1],[128,0,0,0,0,0,128,0,0,0,0,0,209,209,0,0,0,128,0,0,0,0,227,0,128],[227,78,0,0,0,336,304,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[214,202,0,0,0,162,123,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;

A4×Dic7 in GAP, Magma, Sage, TeX

A_4\times {\rm Dic}_7
% in TeX

G:=Group("A4xDic7");
// GroupNames label

G:=SmallGroup(336,133);
// by ID

G=gap.SmallGroup(336,133);
# by ID

G:=PCGroup([6,-2,-3,-2,-2,2,-7,36,441,190,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^14=1,e^2=d^7,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of A4×Dic7 in TeX

׿
×
𝔽