Extensions 1→N→G→Q→1 with N=C6 and Q=C4xD7

Direct product G=NxQ with N=C6 and Q=C4xD7
dρLabelID
D7xC2xC12168D7xC2xC12336,175

Semidirect products G=N:Q with N=C6 and Q=C4xD7
extensionφ:Q→Aut NdρLabelID
C6:1(C4xD7) = C2xD21:C4φ: C4xD7/Dic7C2 ⊆ Aut C6168C6:1(C4xD7)336,156
C6:2(C4xD7) = C2xC4xD21φ: C4xD7/C28C2 ⊆ Aut C6168C6:2(C4xD7)336,195
C6:3(C4xD7) = C2xDic3xD7φ: C4xD7/D14C2 ⊆ Aut C6168C6:3(C4xD7)336,151

Non-split extensions G=N.Q with N=C6 and Q=C4xD7
extensionφ:Q→Aut NdρLabelID
C6.1(C4xD7) = D21:C8φ: C4xD7/Dic7C2 ⊆ Aut C61684C6.1(C4xD7)336,25
C6.2(C4xD7) = D42.C4φ: C4xD7/Dic7C2 ⊆ Aut C61684C6.2(C4xD7)336,28
C6.3(C4xD7) = D42:C4φ: C4xD7/Dic7C2 ⊆ Aut C6168C6.3(C4xD7)336,44
C6.4(C4xD7) = Dic21:C4φ: C4xD7/Dic7C2 ⊆ Aut C6336C6.4(C4xD7)336,46
C6.5(C4xD7) = C8xD21φ: C4xD7/C28C2 ⊆ Aut C61682C6.5(C4xD7)336,90
C6.6(C4xD7) = C56:S3φ: C4xD7/C28C2 ⊆ Aut C61682C6.6(C4xD7)336,91
C6.7(C4xD7) = C4xDic21φ: C4xD7/C28C2 ⊆ Aut C6336C6.7(C4xD7)336,97
C6.8(C4xD7) = C42.4Q8φ: C4xD7/C28C2 ⊆ Aut C6336C6.8(C4xD7)336,98
C6.9(C4xD7) = C2.D84φ: C4xD7/C28C2 ⊆ Aut C6168C6.9(C4xD7)336,100
C6.10(C4xD7) = D7xC3:C8φ: C4xD7/D14C2 ⊆ Aut C61684C6.10(C4xD7)336,23
C6.11(C4xD7) = C28.32D6φ: C4xD7/D14C2 ⊆ Aut C61684C6.11(C4xD7)336,26
C6.12(C4xD7) = Dic3xDic7φ: C4xD7/D14C2 ⊆ Aut C6336C6.12(C4xD7)336,41
C6.13(C4xD7) = D14:Dic3φ: C4xD7/D14C2 ⊆ Aut C6168C6.13(C4xD7)336,42
C6.14(C4xD7) = C42.Q8φ: C4xD7/D14C2 ⊆ Aut C6336C6.14(C4xD7)336,45
C6.15(C4xD7) = D7xC24central extension (φ=1)1682C6.15(C4xD7)336,58
C6.16(C4xD7) = C3xC8:D7central extension (φ=1)1682C6.16(C4xD7)336,59
C6.17(C4xD7) = C12xDic7central extension (φ=1)336C6.17(C4xD7)336,65
C6.18(C4xD7) = C3xDic7:C4central extension (φ=1)336C6.18(C4xD7)336,66
C6.19(C4xD7) = C3xD14:C4central extension (φ=1)168C6.19(C4xD7)336,68

׿
x
:
Z
F
o
wr
Q
<