Copied to
clipboard

G = C56⋊S3order 336 = 24·3·7

4th semidirect product of C56 and S3 acting via S3/C3=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C564S3, C245D7, C83D21, C1685C2, D42.1C4, C4.13D42, C28.48D6, C214M4(2), C12.49D14, C84.55C22, Dic21.1C4, C6.6(C4×D7), C21⋊C84C2, C72(C8⋊S3), C14.6(C4×S3), C32(C8⋊D7), C2.3(C4×D21), C42.15(C2×C4), (C4×D21).2C2, SmallGroup(336,91)

Series: Derived Chief Lower central Upper central

C1C42 — C56⋊S3
C1C7C21C42C84C4×D21 — C56⋊S3
C21C42 — C56⋊S3
C1C4C8

Generators and relations for C56⋊S3
 G = < a,b,c | a56=b3=c2=1, ab=ba, cac=a13, cbc=b-1 >

42C2
21C22
21C4
14S3
6D7
21C2×C4
21C8
7Dic3
7D6
3Dic7
3D14
2D21
21M4(2)
7C3⋊C8
7C4×S3
3C4×D7
3C7⋊C8
7C8⋊S3
3C8⋊D7

Smallest permutation representation of C56⋊S3
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 96 156)(2 97 157)(3 98 158)(4 99 159)(5 100 160)(6 101 161)(7 102 162)(8 103 163)(9 104 164)(10 105 165)(11 106 166)(12 107 167)(13 108 168)(14 109 113)(15 110 114)(16 111 115)(17 112 116)(18 57 117)(19 58 118)(20 59 119)(21 60 120)(22 61 121)(23 62 122)(24 63 123)(25 64 124)(26 65 125)(27 66 126)(28 67 127)(29 68 128)(30 69 129)(31 70 130)(32 71 131)(33 72 132)(34 73 133)(35 74 134)(36 75 135)(37 76 136)(38 77 137)(39 78 138)(40 79 139)(41 80 140)(42 81 141)(43 82 142)(44 83 143)(45 84 144)(46 85 145)(47 86 146)(48 87 147)(49 88 148)(50 89 149)(51 90 150)(52 91 151)(53 92 152)(54 93 153)(55 94 154)(56 95 155)
(2 14)(3 27)(4 40)(5 53)(6 10)(7 23)(8 36)(9 49)(11 19)(12 32)(13 45)(16 28)(17 41)(18 54)(20 24)(21 37)(22 50)(25 33)(26 46)(30 42)(31 55)(34 38)(35 51)(39 47)(44 56)(48 52)(57 153)(58 166)(59 123)(60 136)(61 149)(62 162)(63 119)(64 132)(65 145)(66 158)(67 115)(68 128)(69 141)(70 154)(71 167)(72 124)(73 137)(74 150)(75 163)(76 120)(77 133)(78 146)(79 159)(80 116)(81 129)(82 142)(83 155)(84 168)(85 125)(86 138)(87 151)(88 164)(89 121)(90 134)(91 147)(92 160)(93 117)(94 130)(95 143)(96 156)(97 113)(98 126)(99 139)(100 152)(101 165)(102 122)(103 135)(104 148)(105 161)(106 118)(107 131)(108 144)(109 157)(110 114)(111 127)(112 140)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,96,156)(2,97,157)(3,98,158)(4,99,159)(5,100,160)(6,101,161)(7,102,162)(8,103,163)(9,104,164)(10,105,165)(11,106,166)(12,107,167)(13,108,168)(14,109,113)(15,110,114)(16,111,115)(17,112,116)(18,57,117)(19,58,118)(20,59,119)(21,60,120)(22,61,121)(23,62,122)(24,63,123)(25,64,124)(26,65,125)(27,66,126)(28,67,127)(29,68,128)(30,69,129)(31,70,130)(32,71,131)(33,72,132)(34,73,133)(35,74,134)(36,75,135)(37,76,136)(38,77,137)(39,78,138)(40,79,139)(41,80,140)(42,81,141)(43,82,142)(44,83,143)(45,84,144)(46,85,145)(47,86,146)(48,87,147)(49,88,148)(50,89,149)(51,90,150)(52,91,151)(53,92,152)(54,93,153)(55,94,154)(56,95,155), (2,14)(3,27)(4,40)(5,53)(6,10)(7,23)(8,36)(9,49)(11,19)(12,32)(13,45)(16,28)(17,41)(18,54)(20,24)(21,37)(22,50)(25,33)(26,46)(30,42)(31,55)(34,38)(35,51)(39,47)(44,56)(48,52)(57,153)(58,166)(59,123)(60,136)(61,149)(62,162)(63,119)(64,132)(65,145)(66,158)(67,115)(68,128)(69,141)(70,154)(71,167)(72,124)(73,137)(74,150)(75,163)(76,120)(77,133)(78,146)(79,159)(80,116)(81,129)(82,142)(83,155)(84,168)(85,125)(86,138)(87,151)(88,164)(89,121)(90,134)(91,147)(92,160)(93,117)(94,130)(95,143)(96,156)(97,113)(98,126)(99,139)(100,152)(101,165)(102,122)(103,135)(104,148)(105,161)(106,118)(107,131)(108,144)(109,157)(110,114)(111,127)(112,140)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,96,156)(2,97,157)(3,98,158)(4,99,159)(5,100,160)(6,101,161)(7,102,162)(8,103,163)(9,104,164)(10,105,165)(11,106,166)(12,107,167)(13,108,168)(14,109,113)(15,110,114)(16,111,115)(17,112,116)(18,57,117)(19,58,118)(20,59,119)(21,60,120)(22,61,121)(23,62,122)(24,63,123)(25,64,124)(26,65,125)(27,66,126)(28,67,127)(29,68,128)(30,69,129)(31,70,130)(32,71,131)(33,72,132)(34,73,133)(35,74,134)(36,75,135)(37,76,136)(38,77,137)(39,78,138)(40,79,139)(41,80,140)(42,81,141)(43,82,142)(44,83,143)(45,84,144)(46,85,145)(47,86,146)(48,87,147)(49,88,148)(50,89,149)(51,90,150)(52,91,151)(53,92,152)(54,93,153)(55,94,154)(56,95,155), (2,14)(3,27)(4,40)(5,53)(6,10)(7,23)(8,36)(9,49)(11,19)(12,32)(13,45)(16,28)(17,41)(18,54)(20,24)(21,37)(22,50)(25,33)(26,46)(30,42)(31,55)(34,38)(35,51)(39,47)(44,56)(48,52)(57,153)(58,166)(59,123)(60,136)(61,149)(62,162)(63,119)(64,132)(65,145)(66,158)(67,115)(68,128)(69,141)(70,154)(71,167)(72,124)(73,137)(74,150)(75,163)(76,120)(77,133)(78,146)(79,159)(80,116)(81,129)(82,142)(83,155)(84,168)(85,125)(86,138)(87,151)(88,164)(89,121)(90,134)(91,147)(92,160)(93,117)(94,130)(95,143)(96,156)(97,113)(98,126)(99,139)(100,152)(101,165)(102,122)(103,135)(104,148)(105,161)(106,118)(107,131)(108,144)(109,157)(110,114)(111,127)(112,140) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,96,156),(2,97,157),(3,98,158),(4,99,159),(5,100,160),(6,101,161),(7,102,162),(8,103,163),(9,104,164),(10,105,165),(11,106,166),(12,107,167),(13,108,168),(14,109,113),(15,110,114),(16,111,115),(17,112,116),(18,57,117),(19,58,118),(20,59,119),(21,60,120),(22,61,121),(23,62,122),(24,63,123),(25,64,124),(26,65,125),(27,66,126),(28,67,127),(29,68,128),(30,69,129),(31,70,130),(32,71,131),(33,72,132),(34,73,133),(35,74,134),(36,75,135),(37,76,136),(38,77,137),(39,78,138),(40,79,139),(41,80,140),(42,81,141),(43,82,142),(44,83,143),(45,84,144),(46,85,145),(47,86,146),(48,87,147),(49,88,148),(50,89,149),(51,90,150),(52,91,151),(53,92,152),(54,93,153),(55,94,154),(56,95,155)], [(2,14),(3,27),(4,40),(5,53),(6,10),(7,23),(8,36),(9,49),(11,19),(12,32),(13,45),(16,28),(17,41),(18,54),(20,24),(21,37),(22,50),(25,33),(26,46),(30,42),(31,55),(34,38),(35,51),(39,47),(44,56),(48,52),(57,153),(58,166),(59,123),(60,136),(61,149),(62,162),(63,119),(64,132),(65,145),(66,158),(67,115),(68,128),(69,141),(70,154),(71,167),(72,124),(73,137),(74,150),(75,163),(76,120),(77,133),(78,146),(79,159),(80,116),(81,129),(82,142),(83,155),(84,168),(85,125),(86,138),(87,151),(88,164),(89,121),(90,134),(91,147),(92,160),(93,117),(94,130),(95,143),(96,156),(97,113),(98,126),(99,139),(100,152),(101,165),(102,122),(103,135),(104,148),(105,161),(106,118),(107,131),(108,144),(109,157),(110,114),(111,127),(112,140)]])

90 conjugacy classes

class 1 2A2B 3 4A4B4C 6 7A7B7C8A8B8C8D12A12B14A14B14C21A···21F24A24B24C24D28A···28F42A···42F56A···56L84A···84L168A···168X
order122344467778888121214141421···212424242428···2842···4256···5684···84168···168
size1142211422222224242222222···222222···22···22···22···22···2

90 irreducible representations

dim1111112222222222222
type++++++++++
imageC1C2C2C2C4C4S3D6D7M4(2)C4×S3D14D21C8⋊S3C4×D7D42C8⋊D7C4×D21C56⋊S3
kernelC56⋊S3C21⋊C8C168C4×D21Dic21D42C56C28C24C21C14C12C8C7C6C4C3C2C1
# reps1111221132236466121224

Matrix representation of C56⋊S3 in GL2(𝔽337) generated by

3713
324292
,
261161
17675
,
10
227336
G:=sub<GL(2,GF(337))| [37,324,13,292],[261,176,161,75],[1,227,0,336] >;

C56⋊S3 in GAP, Magma, Sage, TeX

C_{56}\rtimes S_3
% in TeX

G:=Group("C56:S3");
// GroupNames label

G:=SmallGroup(336,91);
// by ID

G=gap.SmallGroup(336,91);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,121,31,50,964,10373]);
// Polycyclic

G:=Group<a,b,c|a^56=b^3=c^2=1,a*b=b*a,c*a*c=a^13,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C56⋊S3 in TeX

׿
×
𝔽