Extensions 1→N→G→Q→1 with N=C4xS3 and Q=D7

Direct product G=NxQ with N=C4xS3 and Q=D7
dρLabelID
C4xS3xD7844C4xS3xD7336,147

Semidirect products G=N:Q with N=C4xS3 and Q=D7
extensionφ:Q→Out NdρLabelID
(C4xS3):1D7 = D28:5S3φ: D7/C7C2 ⊆ Out C4xS31684-(C4xS3):1D7336,138
(C4xS3):2D7 = D84:C2φ: D7/C7C2 ⊆ Out C4xS31684+(C4xS3):2D7336,142
(C4xS3):3D7 = S3xD28φ: D7/C7C2 ⊆ Out C4xS3844+(C4xS3):3D7336,149
(C4xS3):4D7 = D6.D14φ: D7/C7C2 ⊆ Out C4xS31684(C4xS3):4D7336,144

Non-split extensions G=N.Q with N=C4xS3 and Q=D7
extensionφ:Q→Out NdρLabelID
(C4xS3).1D7 = S3xDic14φ: D7/C7C2 ⊆ Out C4xS31684-(C4xS3).1D7336,140
(C4xS3).2D7 = D6.Dic7φ: D7/C7C2 ⊆ Out C4xS31684(C4xS3).2D7336,27
(C4xS3).3D7 = S3xC7:C8φ: trivial image1684(C4xS3).3D7336,24

׿
x
:
Z
F
o
wr
Q
<