Extensions 1→N→G→Q→1 with N=C2×C14 and Q=A4

Direct product G=N×Q with N=C2×C14 and Q=A4
dρLabelID
A4×C2×C1484A4xC2xC14336,221

Semidirect products G=N:Q with N=C2×C14 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C2×C14)⋊1A4 = C7×C22⋊A4φ: A4/C22C3 ⊆ Aut C2×C1484(C2xC14):1A4336,223
(C2×C14)⋊2A4 = C7⋊(C22⋊A4)φ: A4/C22C3 ⊆ Aut C2×C1484(C2xC14):2A4336,224
(C2×C14)⋊3A4 = C22×C7⋊A4φ: A4/C22C3 ⊆ Aut C2×C1484(C2xC14):3A4336,222

Non-split extensions G=N.Q with N=C2×C14 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C2×C14).1A4 = C7×C42⋊C3φ: A4/C22C3 ⊆ Aut C2×C14843(C2xC14).1A4336,56
(C2×C14).2A4 = C42⋊(C7⋊C3)φ: A4/C22C3 ⊆ Aut C2×C14843(C2xC14).2A4336,57
(C2×C14).3A4 = C2×C14.A4φ: A4/C22C3 ⊆ Aut C2×C14112(C2xC14).3A4336,172
(C2×C14).4A4 = C14×SL2(𝔽3)central extension (φ=1)112(C2xC14).4A4336,169

׿
×
𝔽