Copied to
clipboard

G = C2×C14.A4order 336 = 24·3·7

Direct product of C2 and C14.A4

direct product, non-abelian, soluble

Aliases: C2×C14.A4, C14⋊SL2(𝔽3), (C7×Q8)⋊8C6, (Q8×C14)⋊2C3, C14.5(C2×A4), (C2×C14).3A4, C22.2(C7⋊A4), C72(C2×SL2(𝔽3)), Q8⋊(C2×C7⋊C3), (C2×Q8)⋊(C7⋊C3), C2.2(C2×C7⋊A4), SmallGroup(336,172)

Series: Derived Chief Lower central Upper central

C1C2C7×Q8 — C2×C14.A4
C1C2C14C7×Q8C14.A4 — C2×C14.A4
C7×Q8 — C2×C14.A4
C1C22

Generators and relations for C2×C14.A4
 G = < a,b,c,d,e | a2=b14=e3=1, c2=d2=b7, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b11, dcd-1=b7c, ece-1=b7cd, ede-1=c >

28C3
3C4
3C4
28C6
28C6
28C6
4C7⋊C3
3C2×C4
3Q8
28C2×C6
3C28
3C28
4C2×C7⋊C3
4C2×C7⋊C3
4C2×C7⋊C3
7SL2(𝔽3)
3C2×C28
3C7×Q8
4C22×C7⋊C3
7C2×SL2(𝔽3)

Smallest permutation representation of C2×C14.A4
On 112 points
Generators in S112
(1 64)(2 65)(3 66)(4 67)(5 68)(6 69)(7 70)(8 57)(9 58)(10 59)(11 60)(12 61)(13 62)(14 63)(15 78)(16 79)(17 80)(18 81)(19 82)(20 83)(21 84)(22 71)(23 72)(24 73)(25 74)(26 75)(27 76)(28 77)(29 92)(30 93)(31 94)(32 95)(33 96)(34 97)(35 98)(36 85)(37 86)(38 87)(39 88)(40 89)(41 90)(42 91)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 112)(50 99)(51 100)(52 101)(53 102)(54 103)(55 104)(56 105)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 29 8 36)(2 30 9 37)(3 31 10 38)(4 32 11 39)(5 33 12 40)(6 34 13 41)(7 35 14 42)(15 43 22 50)(16 44 23 51)(17 45 24 52)(18 46 25 53)(19 47 26 54)(20 48 27 55)(21 49 28 56)(57 85 64 92)(58 86 65 93)(59 87 66 94)(60 88 67 95)(61 89 68 96)(62 90 69 97)(63 91 70 98)(71 99 78 106)(72 100 79 107)(73 101 80 108)(74 102 81 109)(75 103 82 110)(76 104 83 111)(77 105 84 112)
(1 15 8 22)(2 16 9 23)(3 17 10 24)(4 18 11 25)(5 19 12 26)(6 20 13 27)(7 21 14 28)(29 50 36 43)(30 51 37 44)(31 52 38 45)(32 53 39 46)(33 54 40 47)(34 55 41 48)(35 56 42 49)(57 71 64 78)(58 72 65 79)(59 73 66 80)(60 74 67 81)(61 75 68 82)(62 76 69 83)(63 77 70 84)(85 106 92 99)(86 107 93 100)(87 108 94 101)(88 109 95 102)(89 110 96 103)(90 111 97 104)(91 112 98 105)
(2 10 12)(3 5 9)(4 14 6)(7 13 11)(15 43 29)(16 52 40)(17 47 37)(18 56 34)(19 51 31)(20 46 42)(21 55 39)(22 50 36)(23 45 33)(24 54 30)(25 49 41)(26 44 38)(27 53 35)(28 48 32)(58 66 68)(59 61 65)(60 70 62)(63 69 67)(71 99 85)(72 108 96)(73 103 93)(74 112 90)(75 107 87)(76 102 98)(77 111 95)(78 106 92)(79 101 89)(80 110 86)(81 105 97)(82 100 94)(83 109 91)(84 104 88)

G:=sub<Sym(112)| (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,85)(37,86)(38,87)(39,88)(40,89)(41,90)(42,91)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,29,8,36)(2,30,9,37)(3,31,10,38)(4,32,11,39)(5,33,12,40)(6,34,13,41)(7,35,14,42)(15,43,22,50)(16,44,23,51)(17,45,24,52)(18,46,25,53)(19,47,26,54)(20,48,27,55)(21,49,28,56)(57,85,64,92)(58,86,65,93)(59,87,66,94)(60,88,67,95)(61,89,68,96)(62,90,69,97)(63,91,70,98)(71,99,78,106)(72,100,79,107)(73,101,80,108)(74,102,81,109)(75,103,82,110)(76,104,83,111)(77,105,84,112), (1,15,8,22)(2,16,9,23)(3,17,10,24)(4,18,11,25)(5,19,12,26)(6,20,13,27)(7,21,14,28)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49)(57,71,64,78)(58,72,65,79)(59,73,66,80)(60,74,67,81)(61,75,68,82)(62,76,69,83)(63,77,70,84)(85,106,92,99)(86,107,93,100)(87,108,94,101)(88,109,95,102)(89,110,96,103)(90,111,97,104)(91,112,98,105), (2,10,12)(3,5,9)(4,14,6)(7,13,11)(15,43,29)(16,52,40)(17,47,37)(18,56,34)(19,51,31)(20,46,42)(21,55,39)(22,50,36)(23,45,33)(24,54,30)(25,49,41)(26,44,38)(27,53,35)(28,48,32)(58,66,68)(59,61,65)(60,70,62)(63,69,67)(71,99,85)(72,108,96)(73,103,93)(74,112,90)(75,107,87)(76,102,98)(77,111,95)(78,106,92)(79,101,89)(80,110,86)(81,105,97)(82,100,94)(83,109,91)(84,104,88)>;

G:=Group( (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,85)(37,86)(38,87)(39,88)(40,89)(41,90)(42,91)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,29,8,36)(2,30,9,37)(3,31,10,38)(4,32,11,39)(5,33,12,40)(6,34,13,41)(7,35,14,42)(15,43,22,50)(16,44,23,51)(17,45,24,52)(18,46,25,53)(19,47,26,54)(20,48,27,55)(21,49,28,56)(57,85,64,92)(58,86,65,93)(59,87,66,94)(60,88,67,95)(61,89,68,96)(62,90,69,97)(63,91,70,98)(71,99,78,106)(72,100,79,107)(73,101,80,108)(74,102,81,109)(75,103,82,110)(76,104,83,111)(77,105,84,112), (1,15,8,22)(2,16,9,23)(3,17,10,24)(4,18,11,25)(5,19,12,26)(6,20,13,27)(7,21,14,28)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49)(57,71,64,78)(58,72,65,79)(59,73,66,80)(60,74,67,81)(61,75,68,82)(62,76,69,83)(63,77,70,84)(85,106,92,99)(86,107,93,100)(87,108,94,101)(88,109,95,102)(89,110,96,103)(90,111,97,104)(91,112,98,105), (2,10,12)(3,5,9)(4,14,6)(7,13,11)(15,43,29)(16,52,40)(17,47,37)(18,56,34)(19,51,31)(20,46,42)(21,55,39)(22,50,36)(23,45,33)(24,54,30)(25,49,41)(26,44,38)(27,53,35)(28,48,32)(58,66,68)(59,61,65)(60,70,62)(63,69,67)(71,99,85)(72,108,96)(73,103,93)(74,112,90)(75,107,87)(76,102,98)(77,111,95)(78,106,92)(79,101,89)(80,110,86)(81,105,97)(82,100,94)(83,109,91)(84,104,88) );

G=PermutationGroup([[(1,64),(2,65),(3,66),(4,67),(5,68),(6,69),(7,70),(8,57),(9,58),(10,59),(11,60),(12,61),(13,62),(14,63),(15,78),(16,79),(17,80),(18,81),(19,82),(20,83),(21,84),(22,71),(23,72),(24,73),(25,74),(26,75),(27,76),(28,77),(29,92),(30,93),(31,94),(32,95),(33,96),(34,97),(35,98),(36,85),(37,86),(38,87),(39,88),(40,89),(41,90),(42,91),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,112),(50,99),(51,100),(52,101),(53,102),(54,103),(55,104),(56,105)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,29,8,36),(2,30,9,37),(3,31,10,38),(4,32,11,39),(5,33,12,40),(6,34,13,41),(7,35,14,42),(15,43,22,50),(16,44,23,51),(17,45,24,52),(18,46,25,53),(19,47,26,54),(20,48,27,55),(21,49,28,56),(57,85,64,92),(58,86,65,93),(59,87,66,94),(60,88,67,95),(61,89,68,96),(62,90,69,97),(63,91,70,98),(71,99,78,106),(72,100,79,107),(73,101,80,108),(74,102,81,109),(75,103,82,110),(76,104,83,111),(77,105,84,112)], [(1,15,8,22),(2,16,9,23),(3,17,10,24),(4,18,11,25),(5,19,12,26),(6,20,13,27),(7,21,14,28),(29,50,36,43),(30,51,37,44),(31,52,38,45),(32,53,39,46),(33,54,40,47),(34,55,41,48),(35,56,42,49),(57,71,64,78),(58,72,65,79),(59,73,66,80),(60,74,67,81),(61,75,68,82),(62,76,69,83),(63,77,70,84),(85,106,92,99),(86,107,93,100),(87,108,94,101),(88,109,95,102),(89,110,96,103),(90,111,97,104),(91,112,98,105)], [(2,10,12),(3,5,9),(4,14,6),(7,13,11),(15,43,29),(16,52,40),(17,47,37),(18,56,34),(19,51,31),(20,46,42),(21,55,39),(22,50,36),(23,45,33),(24,54,30),(25,49,41),(26,44,38),(27,53,35),(28,48,32),(58,66,68),(59,61,65),(60,70,62),(63,69,67),(71,99,85),(72,108,96),(73,103,93),(74,112,90),(75,107,87),(76,102,98),(77,111,95),(78,106,92),(79,101,89),(80,110,86),(81,105,97),(82,100,94),(83,109,91),(84,104,88)]])

34 conjugacy classes

class 1 2A2B2C3A3B4A4B6A···6F7A7B14A···14F28A···28L
order122233446···67714···1428···28
size111128286628···28333···36···6

34 irreducible representations

dim1111223333336
type++-++
imageC1C2C3C6SL2(𝔽3)SL2(𝔽3)A4C7⋊C3C2×A4C2×C7⋊C3C7⋊A4C2×C7⋊A4C14.A4
kernelC2×C14.A4C14.A4Q8×C14C7×Q8C14C14C2×C14C2×Q8C14Q8C22C2C2
# reps1122241212664

Matrix representation of C2×C14.A4 in GL5(𝔽337)

3360000
0336000
0033600
0003360
0000336
,
3360000
0336000
001213212
00212336336
00336336124
,
80256000
208257000
0019664151
00151761
00611133
,
3362000
3361000
00193186250
00250197277
00277276283
,
10000
209128000
00100
00212336336
00010

G:=sub<GL(5,GF(337))| [336,0,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,336],[336,0,0,0,0,0,336,0,0,0,0,0,1,212,336,0,0,213,336,336,0,0,212,336,124],[80,208,0,0,0,256,257,0,0,0,0,0,196,151,61,0,0,64,7,1,0,0,151,61,133],[336,336,0,0,0,2,1,0,0,0,0,0,193,250,277,0,0,186,197,276,0,0,250,277,283],[1,209,0,0,0,0,128,0,0,0,0,0,1,212,0,0,0,0,336,1,0,0,0,336,0] >;

C2×C14.A4 in GAP, Magma, Sage, TeX

C_2\times C_{14}.A_4
% in TeX

G:=Group("C2xC14.A4");
// GroupNames label

G:=SmallGroup(336,172);
// by ID

G=gap.SmallGroup(336,172);
# by ID

G:=PCGroup([6,-2,-3,-2,2,-7,-2,116,518,225,735,357,730]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^14=e^3=1,c^2=d^2=b^7,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^11,d*c*d^-1=b^7*c,e*c*e^-1=b^7*c*d,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of C2×C14.A4 in TeX

׿
×
𝔽