Copied to
clipboard

G = C14×SL2(𝔽3)  order 336 = 24·3·7

Direct product of C14 and SL2(𝔽3)

direct product, non-abelian, soluble

Aliases: C14×SL2(𝔽3), Q8⋊C42, (C2×Q8)⋊C21, (C7×Q8)⋊7C6, (Q8×C14)⋊1C3, C2.2(A4×C14), (C2×C14).4A4, C14.11(C2×A4), C22.2(C7×A4), SmallGroup(336,169)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C14×SL2(𝔽3)
C1C2Q8C7×Q8C7×SL2(𝔽3) — C14×SL2(𝔽3)
Q8 — C14×SL2(𝔽3)
C1C2×C14

Generators and relations for C14×SL2(𝔽3)
 G = < a,b,c,d | a14=b4=d3=1, c2=b2, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=c, dcd-1=bc >

4C3
3C4
3C4
4C6
4C6
4C6
4C21
3C2×C4
3Q8
4C2×C6
3C28
3C28
4C42
4C42
4C42
3C2×C28
3C7×Q8
4C2×C42

Smallest permutation representation of C14×SL2(𝔽3)
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 85 66 72)(2 86 67 73)(3 87 68 74)(4 88 69 75)(5 89 70 76)(6 90 57 77)(7 91 58 78)(8 92 59 79)(9 93 60 80)(10 94 61 81)(11 95 62 82)(12 96 63 83)(13 97 64 84)(14 98 65 71)(15 37 100 48)(16 38 101 49)(17 39 102 50)(18 40 103 51)(19 41 104 52)(20 42 105 53)(21 29 106 54)(22 30 107 55)(23 31 108 56)(24 32 109 43)(25 33 110 44)(26 34 111 45)(27 35 112 46)(28 36 99 47)
(1 18 66 103)(2 19 67 104)(3 20 68 105)(4 21 69 106)(5 22 70 107)(6 23 57 108)(7 24 58 109)(8 25 59 110)(9 26 60 111)(10 27 61 112)(11 28 62 99)(12 15 63 100)(13 16 64 101)(14 17 65 102)(29 88 54 75)(30 89 55 76)(31 90 56 77)(32 91 43 78)(33 92 44 79)(34 93 45 80)(35 94 46 81)(36 95 47 82)(37 96 48 83)(38 97 49 84)(39 98 50 71)(40 85 51 72)(41 86 52 73)(42 87 53 74)
(15 96 48)(16 97 49)(17 98 50)(18 85 51)(19 86 52)(20 87 53)(21 88 54)(22 89 55)(23 90 56)(24 91 43)(25 92 44)(26 93 45)(27 94 46)(28 95 47)(29 106 75)(30 107 76)(31 108 77)(32 109 78)(33 110 79)(34 111 80)(35 112 81)(36 99 82)(37 100 83)(38 101 84)(39 102 71)(40 103 72)(41 104 73)(42 105 74)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,85,66,72)(2,86,67,73)(3,87,68,74)(4,88,69,75)(5,89,70,76)(6,90,57,77)(7,91,58,78)(8,92,59,79)(9,93,60,80)(10,94,61,81)(11,95,62,82)(12,96,63,83)(13,97,64,84)(14,98,65,71)(15,37,100,48)(16,38,101,49)(17,39,102,50)(18,40,103,51)(19,41,104,52)(20,42,105,53)(21,29,106,54)(22,30,107,55)(23,31,108,56)(24,32,109,43)(25,33,110,44)(26,34,111,45)(27,35,112,46)(28,36,99,47), (1,18,66,103)(2,19,67,104)(3,20,68,105)(4,21,69,106)(5,22,70,107)(6,23,57,108)(7,24,58,109)(8,25,59,110)(9,26,60,111)(10,27,61,112)(11,28,62,99)(12,15,63,100)(13,16,64,101)(14,17,65,102)(29,88,54,75)(30,89,55,76)(31,90,56,77)(32,91,43,78)(33,92,44,79)(34,93,45,80)(35,94,46,81)(36,95,47,82)(37,96,48,83)(38,97,49,84)(39,98,50,71)(40,85,51,72)(41,86,52,73)(42,87,53,74), (15,96,48)(16,97,49)(17,98,50)(18,85,51)(19,86,52)(20,87,53)(21,88,54)(22,89,55)(23,90,56)(24,91,43)(25,92,44)(26,93,45)(27,94,46)(28,95,47)(29,106,75)(30,107,76)(31,108,77)(32,109,78)(33,110,79)(34,111,80)(35,112,81)(36,99,82)(37,100,83)(38,101,84)(39,102,71)(40,103,72)(41,104,73)(42,105,74)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,85,66,72)(2,86,67,73)(3,87,68,74)(4,88,69,75)(5,89,70,76)(6,90,57,77)(7,91,58,78)(8,92,59,79)(9,93,60,80)(10,94,61,81)(11,95,62,82)(12,96,63,83)(13,97,64,84)(14,98,65,71)(15,37,100,48)(16,38,101,49)(17,39,102,50)(18,40,103,51)(19,41,104,52)(20,42,105,53)(21,29,106,54)(22,30,107,55)(23,31,108,56)(24,32,109,43)(25,33,110,44)(26,34,111,45)(27,35,112,46)(28,36,99,47), (1,18,66,103)(2,19,67,104)(3,20,68,105)(4,21,69,106)(5,22,70,107)(6,23,57,108)(7,24,58,109)(8,25,59,110)(9,26,60,111)(10,27,61,112)(11,28,62,99)(12,15,63,100)(13,16,64,101)(14,17,65,102)(29,88,54,75)(30,89,55,76)(31,90,56,77)(32,91,43,78)(33,92,44,79)(34,93,45,80)(35,94,46,81)(36,95,47,82)(37,96,48,83)(38,97,49,84)(39,98,50,71)(40,85,51,72)(41,86,52,73)(42,87,53,74), (15,96,48)(16,97,49)(17,98,50)(18,85,51)(19,86,52)(20,87,53)(21,88,54)(22,89,55)(23,90,56)(24,91,43)(25,92,44)(26,93,45)(27,94,46)(28,95,47)(29,106,75)(30,107,76)(31,108,77)(32,109,78)(33,110,79)(34,111,80)(35,112,81)(36,99,82)(37,100,83)(38,101,84)(39,102,71)(40,103,72)(41,104,73)(42,105,74) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,85,66,72),(2,86,67,73),(3,87,68,74),(4,88,69,75),(5,89,70,76),(6,90,57,77),(7,91,58,78),(8,92,59,79),(9,93,60,80),(10,94,61,81),(11,95,62,82),(12,96,63,83),(13,97,64,84),(14,98,65,71),(15,37,100,48),(16,38,101,49),(17,39,102,50),(18,40,103,51),(19,41,104,52),(20,42,105,53),(21,29,106,54),(22,30,107,55),(23,31,108,56),(24,32,109,43),(25,33,110,44),(26,34,111,45),(27,35,112,46),(28,36,99,47)], [(1,18,66,103),(2,19,67,104),(3,20,68,105),(4,21,69,106),(5,22,70,107),(6,23,57,108),(7,24,58,109),(8,25,59,110),(9,26,60,111),(10,27,61,112),(11,28,62,99),(12,15,63,100),(13,16,64,101),(14,17,65,102),(29,88,54,75),(30,89,55,76),(31,90,56,77),(32,91,43,78),(33,92,44,79),(34,93,45,80),(35,94,46,81),(36,95,47,82),(37,96,48,83),(38,97,49,84),(39,98,50,71),(40,85,51,72),(41,86,52,73),(42,87,53,74)], [(15,96,48),(16,97,49),(17,98,50),(18,85,51),(19,86,52),(20,87,53),(21,88,54),(22,89,55),(23,90,56),(24,91,43),(25,92,44),(26,93,45),(27,94,46),(28,95,47),(29,106,75),(30,107,76),(31,108,77),(32,109,78),(33,110,79),(34,111,80),(35,112,81),(36,99,82),(37,100,83),(38,101,84),(39,102,71),(40,103,72),(41,104,73),(42,105,74)]])

98 conjugacy classes

class 1 2A2B2C3A3B4A4B6A···6F7A···7F14A···14R21A···21L28A···28L42A···42AJ
order122233446···67···714···1421···2128···2842···42
size111144664···41···11···14···46···64···4

98 irreducible representations

dim111111112223333
type++-++
imageC1C2C3C6C7C14C21C42SL2(𝔽3)SL2(𝔽3)C7×SL2(𝔽3)A4C2×A4C7×A4A4×C14
kernelC14×SL2(𝔽3)C7×SL2(𝔽3)Q8×C14C7×Q8C2×SL2(𝔽3)SL2(𝔽3)C2×Q8Q8C14C14C2C2×C14C14C22C2
# reps112266121224361166

Matrix representation of C14×SL2(𝔽3) in GL3(𝔽337) generated by

33600
02850
00285
,
100
00336
010
,
100
0209208
0208128
,
12800
01208
00128
G:=sub<GL(3,GF(337))| [336,0,0,0,285,0,0,0,285],[1,0,0,0,0,1,0,336,0],[1,0,0,0,209,208,0,208,128],[128,0,0,0,1,0,0,208,128] >;

C14×SL2(𝔽3) in GAP, Magma, Sage, TeX

C_{14}\times {\rm SL}_2({\mathbb F}_3)
% in TeX

G:=Group("C14xSL(2,3)");
// GroupNames label

G:=SmallGroup(336,169);
// by ID

G=gap.SmallGroup(336,169);
# by ID

G:=PCGroup([6,-2,-3,-7,-2,2,-2,1017,117,1900,202,88]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^4=d^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=c,d*c*d^-1=b*c>;
// generators/relations

Export

Subgroup lattice of C14×SL2(𝔽3) in TeX

׿
×
𝔽