Extensions 1→N→G→Q→1 with N=C3 and Q=C3×Dic9

Direct product G=N×Q with N=C3 and Q=C3×Dic9
dρLabelID
C32×Dic9108C3^2xDic9324,90

Semidirect products G=N:Q with N=C3 and Q=C3×Dic9
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×Dic9) = C3×C9⋊Dic3φ: C3×Dic9/C3×C18C2 ⊆ Aut C3108C3:(C3xDic9)324,96

Non-split extensions G=N.Q with N=C3 and Q=C3×Dic9
extensionφ:Q→Aut NdρLabelID
C3.1(C3×Dic9) = C32⋊Dic9φ: C3×Dic9/C3×C18C2 ⊆ Aut C3108C3.1(C3xDic9)324,8
C3.2(C3×Dic9) = C3×Dic27φ: C3×Dic9/C3×C18C2 ⊆ Aut C31082C3.2(C3xDic9)324,10
C3.3(C3×Dic9) = C27⋊C12φ: C3×Dic9/C3×C18C2 ⊆ Aut C31086-C3.3(C3xDic9)324,12
C3.4(C3×Dic9) = C9×Dic9central extension (φ=1)362C3.4(C3xDic9)324,6

׿
×
𝔽