d | ρ | Label | ID | ||
---|---|---|---|---|---|
Dic3×C3×C9 | 108 | Dic3xC3xC9 | 324,91 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C3⋊(C9×Dic3) = C9×C3⋊Dic3 | φ: C9×Dic3/C3×C18 → C2 ⊆ Aut C3 | 108 | C3:(C9xDic3) | 324,97 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C3.1(C9×Dic3) = C9×Dic9 | φ: C9×Dic3/C3×C18 → C2 ⊆ Aut C3 | 36 | 2 | C3.1(C9xDic3) | 324,6 |
C3.2(C9×Dic3) = C32⋊C36 | φ: C9×Dic3/C3×C18 → C2 ⊆ Aut C3 | 36 | 6 | C3.2(C9xDic3) | 324,7 |
C3.3(C9×Dic3) = C9⋊C36 | φ: C9×Dic3/C3×C18 → C2 ⊆ Aut C3 | 36 | 6 | C3.3(C9xDic3) | 324,9 |
C3.4(C9×Dic3) = Dic3×C27 | central extension (φ=1) | 108 | 2 | C3.4(C9xDic3) | 324,11 |