Copied to
clipboard

G = Dic3xC27order 324 = 22·34

Direct product of C27 and Dic3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: Dic3xC27, C3:C108, C6.C54, C54.4S3, C32.2C36, (C3xC27):1C4, C2.(S3xC27), C6.8(S3xC9), (C3xC6).5C18, (C3xC54).1C2, (C3xC9).5C12, (C3xDic3).C9, (C9xDic3).C3, C18.10(C3xS3), (C3xC18).21C6, C3.4(C9xDic3), C9.4(C3xDic3), SmallGroup(324,11)

Series: Derived Chief Lower central Upper central

C1C3 — Dic3xC27
C1C3C32C3xC9C3xC18C3xC54 — Dic3xC27
C3 — Dic3xC27
C1C54

Generators and relations for Dic3xC27
 G = < a,b,c | a27=b6=1, c2=b3, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 44 in 30 conjugacy classes, 20 normal (all characteristic)
Quotients: C1, C2, C3, C4, S3, C6, C9, Dic3, C12, C18, C3xS3, C27, C36, C3xDic3, C54, S3xC9, C108, C9xDic3, S3xC27, Dic3xC27
2C3
3C4
2C6
2C9
3C12
2C18
2C27
3C36
2C54
3C108

Smallest permutation representation of Dic3xC27
On 108 points
Generators in S108
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 42 10 51 19 33)(2 43 11 52 20 34)(3 44 12 53 21 35)(4 45 13 54 22 36)(5 46 14 28 23 37)(6 47 15 29 24 38)(7 48 16 30 25 39)(8 49 17 31 26 40)(9 50 18 32 27 41)(55 108 73 99 64 90)(56 82 74 100 65 91)(57 83 75 101 66 92)(58 84 76 102 67 93)(59 85 77 103 68 94)(60 86 78 104 69 95)(61 87 79 105 70 96)(62 88 80 106 71 97)(63 89 81 107 72 98)
(1 68 51 85)(2 69 52 86)(3 70 53 87)(4 71 54 88)(5 72 28 89)(6 73 29 90)(7 74 30 91)(8 75 31 92)(9 76 32 93)(10 77 33 94)(11 78 34 95)(12 79 35 96)(13 80 36 97)(14 81 37 98)(15 55 38 99)(16 56 39 100)(17 57 40 101)(18 58 41 102)(19 59 42 103)(20 60 43 104)(21 61 44 105)(22 62 45 106)(23 63 46 107)(24 64 47 108)(25 65 48 82)(26 66 49 83)(27 67 50 84)

G:=sub<Sym(108)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,42,10,51,19,33)(2,43,11,52,20,34)(3,44,12,53,21,35)(4,45,13,54,22,36)(5,46,14,28,23,37)(6,47,15,29,24,38)(7,48,16,30,25,39)(8,49,17,31,26,40)(9,50,18,32,27,41)(55,108,73,99,64,90)(56,82,74,100,65,91)(57,83,75,101,66,92)(58,84,76,102,67,93)(59,85,77,103,68,94)(60,86,78,104,69,95)(61,87,79,105,70,96)(62,88,80,106,71,97)(63,89,81,107,72,98), (1,68,51,85)(2,69,52,86)(3,70,53,87)(4,71,54,88)(5,72,28,89)(6,73,29,90)(7,74,30,91)(8,75,31,92)(9,76,32,93)(10,77,33,94)(11,78,34,95)(12,79,35,96)(13,80,36,97)(14,81,37,98)(15,55,38,99)(16,56,39,100)(17,57,40,101)(18,58,41,102)(19,59,42,103)(20,60,43,104)(21,61,44,105)(22,62,45,106)(23,63,46,107)(24,64,47,108)(25,65,48,82)(26,66,49,83)(27,67,50,84)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,42,10,51,19,33)(2,43,11,52,20,34)(3,44,12,53,21,35)(4,45,13,54,22,36)(5,46,14,28,23,37)(6,47,15,29,24,38)(7,48,16,30,25,39)(8,49,17,31,26,40)(9,50,18,32,27,41)(55,108,73,99,64,90)(56,82,74,100,65,91)(57,83,75,101,66,92)(58,84,76,102,67,93)(59,85,77,103,68,94)(60,86,78,104,69,95)(61,87,79,105,70,96)(62,88,80,106,71,97)(63,89,81,107,72,98), (1,68,51,85)(2,69,52,86)(3,70,53,87)(4,71,54,88)(5,72,28,89)(6,73,29,90)(7,74,30,91)(8,75,31,92)(9,76,32,93)(10,77,33,94)(11,78,34,95)(12,79,35,96)(13,80,36,97)(14,81,37,98)(15,55,38,99)(16,56,39,100)(17,57,40,101)(18,58,41,102)(19,59,42,103)(20,60,43,104)(21,61,44,105)(22,62,45,106)(23,63,46,107)(24,64,47,108)(25,65,48,82)(26,66,49,83)(27,67,50,84) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,42,10,51,19,33),(2,43,11,52,20,34),(3,44,12,53,21,35),(4,45,13,54,22,36),(5,46,14,28,23,37),(6,47,15,29,24,38),(7,48,16,30,25,39),(8,49,17,31,26,40),(9,50,18,32,27,41),(55,108,73,99,64,90),(56,82,74,100,65,91),(57,83,75,101,66,92),(58,84,76,102,67,93),(59,85,77,103,68,94),(60,86,78,104,69,95),(61,87,79,105,70,96),(62,88,80,106,71,97),(63,89,81,107,72,98)], [(1,68,51,85),(2,69,52,86),(3,70,53,87),(4,71,54,88),(5,72,28,89),(6,73,29,90),(7,74,30,91),(8,75,31,92),(9,76,32,93),(10,77,33,94),(11,78,34,95),(12,79,35,96),(13,80,36,97),(14,81,37,98),(15,55,38,99),(16,56,39,100),(17,57,40,101),(18,58,41,102),(19,59,42,103),(20,60,43,104),(21,61,44,105),(22,62,45,106),(23,63,46,107),(24,64,47,108),(25,65,48,82),(26,66,49,83),(27,67,50,84)]])

162 conjugacy classes

class 1  2 3A3B3C3D3E4A4B6A6B6C6D6E9A···9F9G···9L12A12B12C12D18A···18F18G···18L27A···27R27S···27AJ36A···36L54A···54R54S···54AJ108A···108AJ
order123333344666669···99···91212121218···1818···1827···2727···2736···3654···5454···54108···108
size111122233112221···12···233331···12···21···12···23···31···12···23···3

162 irreducible representations

dim11111111111122222222
type+++-
imageC1C2C3C4C6C9C12C18C27C36C54C108S3Dic3C3xS3C3xDic3S3xC9C9xDic3S3xC27Dic3xC27
kernelDic3xC27C3xC54C9xDic3C3xC27C3xC18C3xDic3C3xC9C3xC6Dic3C32C6C3C54C27C18C9C6C3C2C1
# reps11222646181218361122661818

Matrix representation of Dic3xC27 in GL3(F109) generated by

7800
070
007
,
10800
0450
010563
,
3300
07544
0134
G:=sub<GL(3,GF(109))| [78,0,0,0,7,0,0,0,7],[108,0,0,0,45,105,0,0,63],[33,0,0,0,75,1,0,44,34] >;

Dic3xC27 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times C_{27}
% in TeX

G:=Group("Dic3xC27");
// GroupNames label

G:=SmallGroup(324,11);
// by ID

G=gap.SmallGroup(324,11);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,79,93,7781]);
// Polycyclic

G:=Group<a,b,c|a^27=b^6=1,c^2=b^3,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of Dic3xC27 in TeX

׿
x
:
Z
F
o
wr
Q
<