Extensions 1→N→G→Q→1 with N=C14 and Q=D12

Direct product G=N×Q with N=C14 and Q=D12
dρLabelID
C14×D12168C14xD12336,186

Semidirect products G=N:Q with N=C14 and Q=D12
extensionφ:Q→Aut NdρLabelID
C141D12 = C2×D84φ: D12/C12C2 ⊆ Aut C14168C14:1D12336,196
C142D12 = C2×C7⋊D12φ: D12/D6C2 ⊆ Aut C14168C14:2D12336,159

Non-split extensions G=N.Q with N=C14 and Q=D12
extensionφ:Q→Aut NdρLabelID
C14.1D12 = C8⋊D21φ: D12/C12C2 ⊆ Aut C141682C14.1D12336,92
C14.2D12 = D168φ: D12/C12C2 ⊆ Aut C141682+C14.2D12336,93
C14.3D12 = Dic84φ: D12/C12C2 ⊆ Aut C143362-C14.3D12336,94
C14.4D12 = C84⋊C4φ: D12/C12C2 ⊆ Aut C14336C14.4D12336,99
C14.5D12 = C2.D84φ: D12/C12C2 ⊆ Aut C14168C14.5D12336,100
C14.6D12 = C7⋊D24φ: D12/D6C2 ⊆ Aut C141684+C14.6D12336,31
C14.7D12 = D12.D7φ: D12/D6C2 ⊆ Aut C141684-C14.7D12336,36
C14.8D12 = Dic6⋊D7φ: D12/D6C2 ⊆ Aut C141684+C14.8D12336,37
C14.9D12 = C7⋊Dic12φ: D12/D6C2 ⊆ Aut C143364-C14.9D12336,40
C14.10D12 = D6⋊Dic7φ: D12/D6C2 ⊆ Aut C14168C14.10D12336,43
C14.11D12 = D42⋊C4φ: D12/D6C2 ⊆ Aut C14168C14.11D12336,44
C14.12D12 = C42.Q8φ: D12/D6C2 ⊆ Aut C14336C14.12D12336,45
C14.13D12 = C7×C24⋊C2central extension (φ=1)1682C14.13D12336,76
C14.14D12 = C7×D24central extension (φ=1)1682C14.14D12336,77
C14.15D12 = C7×Dic12central extension (φ=1)3362C14.15D12336,78
C14.16D12 = C7×C4⋊Dic3central extension (φ=1)336C14.16D12336,83
C14.17D12 = C7×D6⋊C4central extension (φ=1)168C14.17D12336,84

׿
×
𝔽