Extensions 1→N→G→Q→1 with N=C2xC14 and Q=D6

Direct product G=NxQ with N=C2xC14 and Q=D6
dρLabelID
S3xC22xC14168S3xC2^2xC14336,226

Semidirect products G=N:Q with N=C2xC14 and Q=D6
extensionφ:Q→Aut NdρLabelID
(C2xC14):D6 = D7xS4φ: D6/C1D6 ⊆ Aut C2xC14286+(C2xC14):D6336,212
(C2xC14):2D6 = C14xS4φ: D6/C2S3 ⊆ Aut C2xC14423(C2xC14):2D6336,214
(C2xC14):3D6 = C2xC7:S4φ: D6/C2S3 ⊆ Aut C2xC14426+(C2xC14):3D6336,215
(C2xC14):4D6 = D7xC3:D4φ: D6/C3C22 ⊆ Aut C2xC14844(C2xC14):4D6336,161
(C2xC14):5D6 = D6:D14φ: D6/C3C22 ⊆ Aut C2xC14844+(C2xC14):5D6336,163
(C2xC14):6D6 = D4xD21φ: D6/C3C22 ⊆ Aut C2xC14844+(C2xC14):6D6336,198
(C2xC14):7D6 = S3xC7xD4φ: D6/S3C2 ⊆ Aut C2xC14844(C2xC14):7D6336,188
(C2xC14):8D6 = S3xC7:D4φ: D6/S3C2 ⊆ Aut C2xC14844(C2xC14):8D6336,162
(C2xC14):9D6 = C22xS3xD7φ: D6/S3C2 ⊆ Aut C2xC1484(C2xC14):9D6336,219
(C2xC14):10D6 = C14xC3:D4φ: D6/C6C2 ⊆ Aut C2xC14168(C2xC14):10D6336,193
(C2xC14):11D6 = C2xC21:7D4φ: D6/C6C2 ⊆ Aut C2xC14168(C2xC14):11D6336,203
(C2xC14):12D6 = C23xD21φ: D6/C6C2 ⊆ Aut C2xC14168(C2xC14):12D6336,227

Non-split extensions G=N.Q with N=C2xC14 and Q=D6
extensionφ:Q→Aut NdρLabelID
(C2xC14).1D6 = C42.C23φ: D6/C3C22 ⊆ Aut C2xC141684-(C2xC14).1D6336,153
(C2xC14).2D6 = Dic3.D14φ: D6/C3C22 ⊆ Aut C2xC141684(C2xC14).2D6336,155
(C2xC14).3D6 = D4:2D21φ: D6/C3C22 ⊆ Aut C2xC141684-(C2xC14).3D6336,199
(C2xC14).4D6 = C7xD4:2S3φ: D6/S3C2 ⊆ Aut C2xC141684(C2xC14).4D6336,189
(C2xC14).5D6 = Dic3xDic7φ: D6/S3C2 ⊆ Aut C2xC14336(C2xC14).5D6336,41
(C2xC14).6D6 = D14:Dic3φ: D6/S3C2 ⊆ Aut C2xC14168(C2xC14).6D6336,42
(C2xC14).7D6 = D6:Dic7φ: D6/S3C2 ⊆ Aut C2xC14168(C2xC14).7D6336,43
(C2xC14).8D6 = D42:C4φ: D6/S3C2 ⊆ Aut C2xC14168(C2xC14).8D6336,44
(C2xC14).9D6 = C42.Q8φ: D6/S3C2 ⊆ Aut C2xC14336(C2xC14).9D6336,45
(C2xC14).10D6 = Dic21:C4φ: D6/S3C2 ⊆ Aut C2xC14336(C2xC14).10D6336,46
(C2xC14).11D6 = C14.Dic6φ: D6/S3C2 ⊆ Aut C2xC14336(C2xC14).11D6336,47
(C2xC14).12D6 = C2xDic3xD7φ: D6/S3C2 ⊆ Aut C2xC14168(C2xC14).12D6336,151
(C2xC14).13D6 = Dic7.D6φ: D6/S3C2 ⊆ Aut C2xC141684(C2xC14).13D6336,152
(C2xC14).14D6 = C2xS3xDic7φ: D6/S3C2 ⊆ Aut C2xC14168(C2xC14).14D6336,154
(C2xC14).15D6 = C2xD21:C4φ: D6/S3C2 ⊆ Aut C2xC14168(C2xC14).15D6336,156
(C2xC14).16D6 = C2xC21:D4φ: D6/S3C2 ⊆ Aut C2xC14168(C2xC14).16D6336,157
(C2xC14).17D6 = C2xC3:D28φ: D6/S3C2 ⊆ Aut C2xC14168(C2xC14).17D6336,158
(C2xC14).18D6 = C2xC7:D12φ: D6/S3C2 ⊆ Aut C2xC14168(C2xC14).18D6336,159
(C2xC14).19D6 = C2xC21:Q8φ: D6/S3C2 ⊆ Aut C2xC14336(C2xC14).19D6336,160
(C2xC14).20D6 = C7xC4oD12φ: D6/C6C2 ⊆ Aut C2xC141682(C2xC14).20D6336,187
(C2xC14).21D6 = C4xDic21φ: D6/C6C2 ⊆ Aut C2xC14336(C2xC14).21D6336,97
(C2xC14).22D6 = C42.4Q8φ: D6/C6C2 ⊆ Aut C2xC14336(C2xC14).22D6336,98
(C2xC14).23D6 = C84:C4φ: D6/C6C2 ⊆ Aut C2xC14336(C2xC14).23D6336,99
(C2xC14).24D6 = C2.D84φ: D6/C6C2 ⊆ Aut C2xC14168(C2xC14).24D6336,100
(C2xC14).25D6 = C42.38D4φ: D6/C6C2 ⊆ Aut C2xC14168(C2xC14).25D6336,105
(C2xC14).26D6 = C2xDic42φ: D6/C6C2 ⊆ Aut C2xC14336(C2xC14).26D6336,194
(C2xC14).27D6 = C2xC4xD21φ: D6/C6C2 ⊆ Aut C2xC14168(C2xC14).27D6336,195
(C2xC14).28D6 = C2xD84φ: D6/C6C2 ⊆ Aut C2xC14168(C2xC14).28D6336,196
(C2xC14).29D6 = D84:11C2φ: D6/C6C2 ⊆ Aut C2xC141682(C2xC14).29D6336,197
(C2xC14).30D6 = C22xDic21φ: D6/C6C2 ⊆ Aut C2xC14336(C2xC14).30D6336,202
(C2xC14).31D6 = Dic3xC28central extension (φ=1)336(C2xC14).31D6336,81
(C2xC14).32D6 = C7xDic3:C4central extension (φ=1)336(C2xC14).32D6336,82
(C2xC14).33D6 = C7xC4:Dic3central extension (φ=1)336(C2xC14).33D6336,83
(C2xC14).34D6 = C7xD6:C4central extension (φ=1)168(C2xC14).34D6336,84
(C2xC14).35D6 = C7xC6.D4central extension (φ=1)168(C2xC14).35D6336,89
(C2xC14).36D6 = C14xDic6central extension (φ=1)336(C2xC14).36D6336,184
(C2xC14).37D6 = S3xC2xC28central extension (φ=1)168(C2xC14).37D6336,185
(C2xC14).38D6 = C14xD12central extension (φ=1)168(C2xC14).38D6336,186
(C2xC14).39D6 = Dic3xC2xC14central extension (φ=1)336(C2xC14).39D6336,192

׿
x
:
Z
F
o
wr
Q
<