extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C7⋊D4) = C7⋊D24 | φ: C7⋊D4/Dic7 → C2 ⊆ Aut C6 | 168 | 4+ | C6.1(C7:D4) | 336,31 |
C6.2(C7⋊D4) = D12.D7 | φ: C7⋊D4/Dic7 → C2 ⊆ Aut C6 | 168 | 4- | C6.2(C7:D4) | 336,36 |
C6.3(C7⋊D4) = Dic6⋊D7 | φ: C7⋊D4/Dic7 → C2 ⊆ Aut C6 | 168 | 4+ | C6.3(C7:D4) | 336,37 |
C6.4(C7⋊D4) = C7⋊Dic12 | φ: C7⋊D4/Dic7 → C2 ⊆ Aut C6 | 336 | 4- | C6.4(C7:D4) | 336,40 |
C6.5(C7⋊D4) = D42⋊C4 | φ: C7⋊D4/Dic7 → C2 ⊆ Aut C6 | 168 | | C6.5(C7:D4) | 336,44 |
C6.6(C7⋊D4) = C42.Q8 | φ: C7⋊D4/Dic7 → C2 ⊆ Aut C6 | 336 | | C6.6(C7:D4) | 336,45 |
C6.7(C7⋊D4) = C21⋊D8 | φ: C7⋊D4/D14 → C2 ⊆ Aut C6 | 168 | 4 | C6.7(C7:D4) | 336,29 |
C6.8(C7⋊D4) = C28.D6 | φ: C7⋊D4/D14 → C2 ⊆ Aut C6 | 168 | 4 | C6.8(C7:D4) | 336,32 |
C6.9(C7⋊D4) = C42.D4 | φ: C7⋊D4/D14 → C2 ⊆ Aut C6 | 168 | 4 | C6.9(C7:D4) | 336,33 |
C6.10(C7⋊D4) = C21⋊Q16 | φ: C7⋊D4/D14 → C2 ⊆ Aut C6 | 336 | 4 | C6.10(C7:D4) | 336,38 |
C6.11(C7⋊D4) = D14⋊Dic3 | φ: C7⋊D4/D14 → C2 ⊆ Aut C6 | 168 | | C6.11(C7:D4) | 336,42 |
C6.12(C7⋊D4) = D6⋊Dic7 | φ: C7⋊D4/D14 → C2 ⊆ Aut C6 | 168 | | C6.12(C7:D4) | 336,43 |
C6.13(C7⋊D4) = Dic21⋊C4 | φ: C7⋊D4/D14 → C2 ⊆ Aut C6 | 336 | | C6.13(C7:D4) | 336,46 |
C6.14(C7⋊D4) = C42.4Q8 | φ: C7⋊D4/C2×C14 → C2 ⊆ Aut C6 | 336 | | C6.14(C7:D4) | 336,98 |
C6.15(C7⋊D4) = C2.D84 | φ: C7⋊D4/C2×C14 → C2 ⊆ Aut C6 | 168 | | C6.15(C7:D4) | 336,100 |
C6.16(C7⋊D4) = D4⋊D21 | φ: C7⋊D4/C2×C14 → C2 ⊆ Aut C6 | 168 | 4+ | C6.16(C7:D4) | 336,101 |
C6.17(C7⋊D4) = D4.D21 | φ: C7⋊D4/C2×C14 → C2 ⊆ Aut C6 | 168 | 4- | C6.17(C7:D4) | 336,102 |
C6.18(C7⋊D4) = Q8⋊2D21 | φ: C7⋊D4/C2×C14 → C2 ⊆ Aut C6 | 168 | 4+ | C6.18(C7:D4) | 336,103 |
C6.19(C7⋊D4) = C21⋊7Q16 | φ: C7⋊D4/C2×C14 → C2 ⊆ Aut C6 | 336 | 4- | C6.19(C7:D4) | 336,104 |
C6.20(C7⋊D4) = C42.38D4 | φ: C7⋊D4/C2×C14 → C2 ⊆ Aut C6 | 168 | | C6.20(C7:D4) | 336,105 |
C6.21(C7⋊D4) = C3×Dic7⋊C4 | central extension (φ=1) | 336 | | C6.21(C7:D4) | 336,66 |
C6.22(C7⋊D4) = C3×D14⋊C4 | central extension (φ=1) | 168 | | C6.22(C7:D4) | 336,68 |
C6.23(C7⋊D4) = C3×D4⋊D7 | central extension (φ=1) | 168 | 4 | C6.23(C7:D4) | 336,69 |
C6.24(C7⋊D4) = C3×D4.D7 | central extension (φ=1) | 168 | 4 | C6.24(C7:D4) | 336,70 |
C6.25(C7⋊D4) = C3×Q8⋊D7 | central extension (φ=1) | 168 | 4 | C6.25(C7:D4) | 336,71 |
C6.26(C7⋊D4) = C3×C7⋊Q16 | central extension (φ=1) | 336 | 4 | C6.26(C7:D4) | 336,72 |
C6.27(C7⋊D4) = C3×C23.D7 | central extension (φ=1) | 168 | | C6.27(C7:D4) | 336,73 |