extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(S3×D7) = C3⋊D56 | φ: S3×D7/S3×C7 → C2 ⊆ Aut C4 | 168 | 4+ | C4.1(S3xD7) | 336,30 |
C4.2(S3×D7) = C6.D28 | φ: S3×D7/S3×C7 → C2 ⊆ Aut C4 | 168 | 4- | C4.2(S3xD7) | 336,34 |
C4.3(S3×D7) = C21⋊SD16 | φ: S3×D7/S3×C7 → C2 ⊆ Aut C4 | 168 | 4+ | C4.3(S3xD7) | 336,35 |
C4.4(S3×D7) = C3⋊Dic28 | φ: S3×D7/S3×C7 → C2 ⊆ Aut C4 | 336 | 4- | C4.4(S3xD7) | 336,39 |
C4.5(S3×D7) = D28⋊5S3 | φ: S3×D7/S3×C7 → C2 ⊆ Aut C4 | 168 | 4- | C4.5(S3xD7) | 336,138 |
C4.6(S3×D7) = S3×Dic14 | φ: S3×D7/S3×C7 → C2 ⊆ Aut C4 | 168 | 4- | C4.6(S3xD7) | 336,140 |
C4.7(S3×D7) = D84⋊C2 | φ: S3×D7/S3×C7 → C2 ⊆ Aut C4 | 168 | 4+ | C4.7(S3xD7) | 336,142 |
C4.8(S3×D7) = C7⋊D24 | φ: S3×D7/C3×D7 → C2 ⊆ Aut C4 | 168 | 4+ | C4.8(S3xD7) | 336,31 |
C4.9(S3×D7) = D12.D7 | φ: S3×D7/C3×D7 → C2 ⊆ Aut C4 | 168 | 4- | C4.9(S3xD7) | 336,36 |
C4.10(S3×D7) = Dic6⋊D7 | φ: S3×D7/C3×D7 → C2 ⊆ Aut C4 | 168 | 4+ | C4.10(S3xD7) | 336,37 |
C4.11(S3×D7) = C7⋊Dic12 | φ: S3×D7/C3×D7 → C2 ⊆ Aut C4 | 336 | 4- | C4.11(S3xD7) | 336,40 |
C4.12(S3×D7) = D7×Dic6 | φ: S3×D7/C3×D7 → C2 ⊆ Aut C4 | 168 | 4- | C4.12(S3xD7) | 336,137 |
C4.13(S3×D7) = D12⋊5D7 | φ: S3×D7/C3×D7 → C2 ⊆ Aut C4 | 168 | 4- | C4.13(S3xD7) | 336,145 |
C4.14(S3×D7) = D14.D6 | φ: S3×D7/C3×D7 → C2 ⊆ Aut C4 | 168 | 4+ | C4.14(S3xD7) | 336,146 |
C4.15(S3×D7) = C21⋊D8 | φ: S3×D7/D21 → C2 ⊆ Aut C4 | 168 | 4 | C4.15(S3xD7) | 336,29 |
C4.16(S3×D7) = C28.D6 | φ: S3×D7/D21 → C2 ⊆ Aut C4 | 168 | 4 | C4.16(S3xD7) | 336,32 |
C4.17(S3×D7) = C42.D4 | φ: S3×D7/D21 → C2 ⊆ Aut C4 | 168 | 4 | C4.17(S3xD7) | 336,33 |
C4.18(S3×D7) = C21⋊Q16 | φ: S3×D7/D21 → C2 ⊆ Aut C4 | 336 | 4 | C4.18(S3xD7) | 336,38 |
C4.19(S3×D7) = D28⋊S3 | φ: S3×D7/D21 → C2 ⊆ Aut C4 | 168 | 4 | C4.19(S3xD7) | 336,139 |
C4.20(S3×D7) = D12⋊D7 | φ: S3×D7/D21 → C2 ⊆ Aut C4 | 168 | 4 | C4.20(S3xD7) | 336,141 |
C4.21(S3×D7) = D21⋊Q8 | φ: S3×D7/D21 → C2 ⊆ Aut C4 | 168 | 4 | C4.21(S3xD7) | 336,143 |
C4.22(S3×D7) = D7×C3⋊C8 | central extension (φ=1) | 168 | 4 | C4.22(S3xD7) | 336,23 |
C4.23(S3×D7) = S3×C7⋊C8 | central extension (φ=1) | 168 | 4 | C4.23(S3xD7) | 336,24 |
C4.24(S3×D7) = D21⋊C8 | central extension (φ=1) | 168 | 4 | C4.24(S3xD7) | 336,25 |
C4.25(S3×D7) = C28.32D6 | central extension (φ=1) | 168 | 4 | C4.25(S3xD7) | 336,26 |
C4.26(S3×D7) = D6.Dic7 | central extension (φ=1) | 168 | 4 | C4.26(S3xD7) | 336,27 |
C4.27(S3×D7) = D42.C4 | central extension (φ=1) | 168 | 4 | C4.27(S3xD7) | 336,28 |
C4.28(S3×D7) = D6.D14 | central extension (φ=1) | 168 | 4 | C4.28(S3xD7) | 336,144 |