direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×D7, C7⋊1D6, D21⋊C2, C3⋊1D14, C21⋊C22, (S3×C7)⋊C2, (C3×D7)⋊C2, SmallGroup(84,8)
Series: Derived ►Chief ►Lower central ►Upper central
C21 — S3×D7 |
Generators and relations for S3×D7
G = < a,b,c,d | a3=b2=c7=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of S3×D7
class | 1 | 2A | 2B | 2C | 3 | 6 | 7A | 7B | 7C | 14A | 14B | 14C | 21A | 21B | 21C | |
size | 1 | 3 | 7 | 21 | 2 | 14 | 2 | 2 | 2 | 6 | 6 | 6 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 0 | -2 | 0 | -1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ6 | 2 | 0 | 2 | 0 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | -2 | 0 | 0 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | orthogonal lifted from D14 |
ρ8 | 2 | -2 | 0 | 0 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | orthogonal lifted from D14 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | orthogonal lifted from D14 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ13 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 0 | 0 | 0 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | orthogonal faithful |
ρ14 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 0 | 0 | 0 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | orthogonal faithful |
ρ15 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 0 | 0 | 0 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | orthogonal faithful |
(1 13 20)(2 14 21)(3 8 15)(4 9 16)(5 10 17)(6 11 18)(7 12 19)
(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)
G:=sub<Sym(21)| (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)>;
G:=Group( (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20) );
G=PermutationGroup([[(1,13,20),(2,14,21),(3,8,15),(4,9,16),(5,10,17),(6,11,18),(7,12,19)], [(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20)]])
G:=TransitiveGroup(21,8);
S3×D7 is a maximal subgroup of
D21⋊S3 D15⋊D7
S3×D7 is a maximal quotient of D21⋊C4 C21⋊D4 C3⋊D28 C7⋊D12 C21⋊Q8 D21⋊S3 D15⋊D7
Matrix representation of S3×D7 ►in GL4(𝔽43) generated by
0 | 42 | 0 | 0 |
1 | 42 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 42 | 1 |
0 | 0 | 22 | 20 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 42 | 0 |
0 | 0 | 22 | 1 |
G:=sub<GL(4,GF(43))| [0,1,0,0,42,42,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,42,22,0,0,1,20],[1,0,0,0,0,1,0,0,0,0,42,22,0,0,0,1] >;
S3×D7 in GAP, Magma, Sage, TeX
S_3\times D_7
% in TeX
G:=Group("S3xD7");
// GroupNames label
G:=SmallGroup(84,8);
// by ID
G=gap.SmallGroup(84,8);
# by ID
G:=PCGroup([4,-2,-2,-3,-7,54,1155]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^7=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of S3×D7 in TeX
Character table of S3×D7 in TeX