Copied to
clipboard

G = C11⋊D16order 352 = 25·11

The semidirect product of C11 and D16 acting via D16/D8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C112D16, D81D11, D883C2, C22.8D8, C44.3D4, C8.4D22, C88.2C22, C11⋊C161C2, (C11×D8)⋊1C2, C2.4(D4⋊D11), C4.1(C11⋊D4), SmallGroup(352,32)

Series: Derived Chief Lower central Upper central

C1C88 — C11⋊D16
C1C11C22C44C88D88 — C11⋊D16
C11C22C44C88 — C11⋊D16
C1C2C4C8D8

Generators and relations for C11⋊D16
 G = < a,b,c | a11=b16=c2=1, bab-1=cac=a-1, cbc=b-1 >

8C2
88C2
4C22
44C22
8D11
8C22
2D4
22D4
4D22
4C2×C22
11C16
11D8
2D44
2D4×C11
11D16

Smallest permutation representation of C11⋊D16
On 176 points
Generators in S176
(1 153 73 123 17 39 102 86 60 166 135)(2 136 167 61 87 103 40 18 124 74 154)(3 155 75 125 19 41 104 88 62 168 137)(4 138 169 63 89 105 42 20 126 76 156)(5 157 77 127 21 43 106 90 64 170 139)(6 140 171 49 91 107 44 22 128 78 158)(7 159 79 113 23 45 108 92 50 172 141)(8 142 173 51 93 109 46 24 114 80 160)(9 145 65 115 25 47 110 94 52 174 143)(10 144 175 53 95 111 48 26 116 66 146)(11 147 67 117 27 33 112 96 54 176 129)(12 130 161 55 81 97 34 28 118 68 148)(13 149 69 119 29 35 98 82 56 162 131)(14 132 163 57 83 99 36 30 120 70 150)(15 151 71 121 31 37 100 84 58 164 133)(16 134 165 59 85 101 38 32 122 72 152)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 86)(18 85)(19 84)(20 83)(21 82)(22 81)(23 96)(24 95)(25 94)(26 93)(27 92)(28 91)(29 90)(30 89)(31 88)(32 87)(33 108)(34 107)(35 106)(36 105)(37 104)(38 103)(39 102)(40 101)(41 100)(42 99)(43 98)(44 97)(45 112)(46 111)(47 110)(48 109)(49 118)(50 117)(51 116)(52 115)(53 114)(54 113)(55 128)(56 127)(57 126)(58 125)(59 124)(60 123)(61 122)(62 121)(63 120)(64 119)(65 174)(66 173)(67 172)(68 171)(69 170)(70 169)(71 168)(72 167)(73 166)(74 165)(75 164)(76 163)(77 162)(78 161)(79 176)(80 175)(129 159)(130 158)(131 157)(132 156)(133 155)(134 154)(135 153)(136 152)(137 151)(138 150)(139 149)(140 148)(141 147)(142 146)(143 145)(144 160)

G:=sub<Sym(176)| (1,153,73,123,17,39,102,86,60,166,135)(2,136,167,61,87,103,40,18,124,74,154)(3,155,75,125,19,41,104,88,62,168,137)(4,138,169,63,89,105,42,20,126,76,156)(5,157,77,127,21,43,106,90,64,170,139)(6,140,171,49,91,107,44,22,128,78,158)(7,159,79,113,23,45,108,92,50,172,141)(8,142,173,51,93,109,46,24,114,80,160)(9,145,65,115,25,47,110,94,52,174,143)(10,144,175,53,95,111,48,26,116,66,146)(11,147,67,117,27,33,112,96,54,176,129)(12,130,161,55,81,97,34,28,118,68,148)(13,149,69,119,29,35,98,82,56,162,131)(14,132,163,57,83,99,36,30,120,70,150)(15,151,71,121,31,37,100,84,58,164,133)(16,134,165,59,85,101,38,32,122,72,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,86)(18,85)(19,84)(20,83)(21,82)(22,81)(23,96)(24,95)(25,94)(26,93)(27,92)(28,91)(29,90)(30,89)(31,88)(32,87)(33,108)(34,107)(35,106)(36,105)(37,104)(38,103)(39,102)(40,101)(41,100)(42,99)(43,98)(44,97)(45,112)(46,111)(47,110)(48,109)(49,118)(50,117)(51,116)(52,115)(53,114)(54,113)(55,128)(56,127)(57,126)(58,125)(59,124)(60,123)(61,122)(62,121)(63,120)(64,119)(65,174)(66,173)(67,172)(68,171)(69,170)(70,169)(71,168)(72,167)(73,166)(74,165)(75,164)(76,163)(77,162)(78,161)(79,176)(80,175)(129,159)(130,158)(131,157)(132,156)(133,155)(134,154)(135,153)(136,152)(137,151)(138,150)(139,149)(140,148)(141,147)(142,146)(143,145)(144,160)>;

G:=Group( (1,153,73,123,17,39,102,86,60,166,135)(2,136,167,61,87,103,40,18,124,74,154)(3,155,75,125,19,41,104,88,62,168,137)(4,138,169,63,89,105,42,20,126,76,156)(5,157,77,127,21,43,106,90,64,170,139)(6,140,171,49,91,107,44,22,128,78,158)(7,159,79,113,23,45,108,92,50,172,141)(8,142,173,51,93,109,46,24,114,80,160)(9,145,65,115,25,47,110,94,52,174,143)(10,144,175,53,95,111,48,26,116,66,146)(11,147,67,117,27,33,112,96,54,176,129)(12,130,161,55,81,97,34,28,118,68,148)(13,149,69,119,29,35,98,82,56,162,131)(14,132,163,57,83,99,36,30,120,70,150)(15,151,71,121,31,37,100,84,58,164,133)(16,134,165,59,85,101,38,32,122,72,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,86)(18,85)(19,84)(20,83)(21,82)(22,81)(23,96)(24,95)(25,94)(26,93)(27,92)(28,91)(29,90)(30,89)(31,88)(32,87)(33,108)(34,107)(35,106)(36,105)(37,104)(38,103)(39,102)(40,101)(41,100)(42,99)(43,98)(44,97)(45,112)(46,111)(47,110)(48,109)(49,118)(50,117)(51,116)(52,115)(53,114)(54,113)(55,128)(56,127)(57,126)(58,125)(59,124)(60,123)(61,122)(62,121)(63,120)(64,119)(65,174)(66,173)(67,172)(68,171)(69,170)(70,169)(71,168)(72,167)(73,166)(74,165)(75,164)(76,163)(77,162)(78,161)(79,176)(80,175)(129,159)(130,158)(131,157)(132,156)(133,155)(134,154)(135,153)(136,152)(137,151)(138,150)(139,149)(140,148)(141,147)(142,146)(143,145)(144,160) );

G=PermutationGroup([[(1,153,73,123,17,39,102,86,60,166,135),(2,136,167,61,87,103,40,18,124,74,154),(3,155,75,125,19,41,104,88,62,168,137),(4,138,169,63,89,105,42,20,126,76,156),(5,157,77,127,21,43,106,90,64,170,139),(6,140,171,49,91,107,44,22,128,78,158),(7,159,79,113,23,45,108,92,50,172,141),(8,142,173,51,93,109,46,24,114,80,160),(9,145,65,115,25,47,110,94,52,174,143),(10,144,175,53,95,111,48,26,116,66,146),(11,147,67,117,27,33,112,96,54,176,129),(12,130,161,55,81,97,34,28,118,68,148),(13,149,69,119,29,35,98,82,56,162,131),(14,132,163,57,83,99,36,30,120,70,150),(15,151,71,121,31,37,100,84,58,164,133),(16,134,165,59,85,101,38,32,122,72,152)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,86),(18,85),(19,84),(20,83),(21,82),(22,81),(23,96),(24,95),(25,94),(26,93),(27,92),(28,91),(29,90),(30,89),(31,88),(32,87),(33,108),(34,107),(35,106),(36,105),(37,104),(38,103),(39,102),(40,101),(41,100),(42,99),(43,98),(44,97),(45,112),(46,111),(47,110),(48,109),(49,118),(50,117),(51,116),(52,115),(53,114),(54,113),(55,128),(56,127),(57,126),(58,125),(59,124),(60,123),(61,122),(62,121),(63,120),(64,119),(65,174),(66,173),(67,172),(68,171),(69,170),(70,169),(71,168),(72,167),(73,166),(74,165),(75,164),(76,163),(77,162),(78,161),(79,176),(80,175),(129,159),(130,158),(131,157),(132,156),(133,155),(134,154),(135,153),(136,152),(137,151),(138,150),(139,149),(140,148),(141,147),(142,146),(143,145),(144,160)]])

46 conjugacy classes

class 1 2A2B2C 4 8A8B11A···11E16A16B16C16D22A···22E22F···22O44A···44E88A···88J
order122248811···111616161622···2222···2244···4488···88
size118882222···2222222222···28···84···44···4

46 irreducible representations

dim111122222244
type+++++++++++
imageC1C2C2C2D4D8D11D16D22C11⋊D4D4⋊D11C11⋊D16
kernelC11⋊D16C11⋊C16D88C11×D8C44C22D8C11C8C4C2C1
# reps11111254510510

Matrix representation of C11⋊D16 in GL4(𝔽353) generated by

204100
20215500
0010
0001
,
28020400
1407300
00333183
00170333
,
7314900
21328000
0001
0010
G:=sub<GL(4,GF(353))| [204,202,0,0,1,155,0,0,0,0,1,0,0,0,0,1],[280,140,0,0,204,73,0,0,0,0,333,170,0,0,183,333],[73,213,0,0,149,280,0,0,0,0,0,1,0,0,1,0] >;

C11⋊D16 in GAP, Magma, Sage, TeX

C_{11}\rtimes D_{16}
% in TeX

G:=Group("C11:D16");
// GroupNames label

G:=SmallGroup(352,32);
// by ID

G=gap.SmallGroup(352,32);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,73,218,116,122,579,297,69,11525]);
// Polycyclic

G:=Group<a,b,c|a^11=b^16=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C11⋊D16 in TeX

׿
×
𝔽