Copied to
clipboard

G = C2×Q8×D11order 352 = 25·11

Direct product of C2, Q8 and D11

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×Q8×D11, C22.8C24, C44.22C23, Dic229C22, D22.10C23, Dic11.5C23, C222(C2×Q8), (Q8×C22)⋊5C2, C112(C22×Q8), (C2×C4).61D22, (Q8×C11)⋊5C22, C2.9(C23×D11), (C2×Dic22)⋊13C2, (C2×C22).66C23, (C2×C44).46C22, C4.22(C22×D11), (C4×D11).13C22, C22.31(C22×D11), (C2×Dic11).44C22, (C22×D11).36C22, (C2×C4×D11).6C2, SmallGroup(352,180)

Series: Derived Chief Lower central Upper central

C1C22 — C2×Q8×D11
C1C11C22D22C22×D11C2×C4×D11 — C2×Q8×D11
C11C22 — C2×Q8×D11
C1C22C2×Q8

Generators and relations for C2×Q8×D11
 G = < a,b,c,d,e | a2=b4=d11=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 746 in 156 conjugacy classes, 97 normal (10 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, Q8, C23, C11, C22×C4, C2×Q8, C2×Q8, D11, C22, C22, C22×Q8, Dic11, C44, D22, C2×C22, Dic22, C4×D11, C2×Dic11, C2×C44, Q8×C11, C22×D11, C2×Dic22, C2×C4×D11, Q8×D11, Q8×C22, C2×Q8×D11
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C24, D11, C22×Q8, D22, C22×D11, Q8×D11, C23×D11, C2×Q8×D11

Smallest permutation representation of C2×Q8×D11
On 176 points
Generators in S176
(1 98)(2 99)(3 89)(4 90)(5 91)(6 92)(7 93)(8 94)(9 95)(10 96)(11 97)(12 100)(13 101)(14 102)(15 103)(16 104)(17 105)(18 106)(19 107)(20 108)(21 109)(22 110)(23 111)(24 112)(25 113)(26 114)(27 115)(28 116)(29 117)(30 118)(31 119)(32 120)(33 121)(34 122)(35 123)(36 124)(37 125)(38 126)(39 127)(40 128)(41 129)(42 130)(43 131)(44 132)(45 133)(46 134)(47 135)(48 136)(49 137)(50 138)(51 139)(52 140)(53 141)(54 142)(55 143)(56 144)(57 145)(58 146)(59 147)(60 148)(61 149)(62 150)(63 151)(64 152)(65 153)(66 154)(67 155)(68 156)(69 157)(70 158)(71 159)(72 160)(73 161)(74 162)(75 163)(76 164)(77 165)(78 166)(79 167)(80 168)(81 169)(82 170)(83 171)(84 172)(85 173)(86 174)(87 175)(88 176)
(1 65 21 54)(2 66 22 55)(3 56 12 45)(4 57 13 46)(5 58 14 47)(6 59 15 48)(7 60 16 49)(8 61 17 50)(9 62 18 51)(10 63 19 52)(11 64 20 53)(23 78 34 67)(24 79 35 68)(25 80 36 69)(26 81 37 70)(27 82 38 71)(28 83 39 72)(29 84 40 73)(30 85 41 74)(31 86 42 75)(32 87 43 76)(33 88 44 77)(89 144 100 133)(90 145 101 134)(91 146 102 135)(92 147 103 136)(93 148 104 137)(94 149 105 138)(95 150 106 139)(96 151 107 140)(97 152 108 141)(98 153 109 142)(99 154 110 143)(111 166 122 155)(112 167 123 156)(113 168 124 157)(114 169 125 158)(115 170 126 159)(116 171 127 160)(117 172 128 161)(118 173 129 162)(119 174 130 163)(120 175 131 164)(121 176 132 165)
(1 131 21 120)(2 132 22 121)(3 122 12 111)(4 123 13 112)(5 124 14 113)(6 125 15 114)(7 126 16 115)(8 127 17 116)(9 128 18 117)(10 129 19 118)(11 130 20 119)(23 89 34 100)(24 90 35 101)(25 91 36 102)(26 92 37 103)(27 93 38 104)(28 94 39 105)(29 95 40 106)(30 96 41 107)(31 97 42 108)(32 98 43 109)(33 99 44 110)(45 155 56 166)(46 156 57 167)(47 157 58 168)(48 158 59 169)(49 159 60 170)(50 160 61 171)(51 161 62 172)(52 162 63 173)(53 163 64 174)(54 164 65 175)(55 165 66 176)(67 144 78 133)(68 145 79 134)(69 146 80 135)(70 147 81 136)(71 148 82 137)(72 149 83 138)(73 150 84 139)(74 151 85 140)(75 152 86 141)(76 153 87 142)(77 154 88 143)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121)(122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143)(144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165)(166 167 168 169 170 171 172 173 174 175 176)
(1 97)(2 96)(3 95)(4 94)(5 93)(6 92)(7 91)(8 90)(9 89)(10 99)(11 98)(12 106)(13 105)(14 104)(15 103)(16 102)(17 101)(18 100)(19 110)(20 109)(21 108)(22 107)(23 117)(24 116)(25 115)(26 114)(27 113)(28 112)(29 111)(30 121)(31 120)(32 119)(33 118)(34 128)(35 127)(36 126)(37 125)(38 124)(39 123)(40 122)(41 132)(42 131)(43 130)(44 129)(45 139)(46 138)(47 137)(48 136)(49 135)(50 134)(51 133)(52 143)(53 142)(54 141)(55 140)(56 150)(57 149)(58 148)(59 147)(60 146)(61 145)(62 144)(63 154)(64 153)(65 152)(66 151)(67 161)(68 160)(69 159)(70 158)(71 157)(72 156)(73 155)(74 165)(75 164)(76 163)(77 162)(78 172)(79 171)(80 170)(81 169)(82 168)(83 167)(84 166)(85 176)(86 175)(87 174)(88 173)

G:=sub<Sym(176)| (1,98)(2,99)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,161)(74,162)(75,163)(76,164)(77,165)(78,166)(79,167)(80,168)(81,169)(82,170)(83,171)(84,172)(85,173)(86,174)(87,175)(88,176), (1,65,21,54)(2,66,22,55)(3,56,12,45)(4,57,13,46)(5,58,14,47)(6,59,15,48)(7,60,16,49)(8,61,17,50)(9,62,18,51)(10,63,19,52)(11,64,20,53)(23,78,34,67)(24,79,35,68)(25,80,36,69)(26,81,37,70)(27,82,38,71)(28,83,39,72)(29,84,40,73)(30,85,41,74)(31,86,42,75)(32,87,43,76)(33,88,44,77)(89,144,100,133)(90,145,101,134)(91,146,102,135)(92,147,103,136)(93,148,104,137)(94,149,105,138)(95,150,106,139)(96,151,107,140)(97,152,108,141)(98,153,109,142)(99,154,110,143)(111,166,122,155)(112,167,123,156)(113,168,124,157)(114,169,125,158)(115,170,126,159)(116,171,127,160)(117,172,128,161)(118,173,129,162)(119,174,130,163)(120,175,131,164)(121,176,132,165), (1,131,21,120)(2,132,22,121)(3,122,12,111)(4,123,13,112)(5,124,14,113)(6,125,15,114)(7,126,16,115)(8,127,17,116)(9,128,18,117)(10,129,19,118)(11,130,20,119)(23,89,34,100)(24,90,35,101)(25,91,36,102)(26,92,37,103)(27,93,38,104)(28,94,39,105)(29,95,40,106)(30,96,41,107)(31,97,42,108)(32,98,43,109)(33,99,44,110)(45,155,56,166)(46,156,57,167)(47,157,58,168)(48,158,59,169)(49,159,60,170)(50,160,61,171)(51,161,62,172)(52,162,63,173)(53,163,64,174)(54,164,65,175)(55,165,66,176)(67,144,78,133)(68,145,79,134)(69,146,80,135)(70,147,81,136)(71,148,82,137)(72,149,83,138)(73,150,84,139)(74,151,85,140)(75,152,86,141)(76,153,87,142)(77,154,88,143), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176), (1,97)(2,96)(3,95)(4,94)(5,93)(6,92)(7,91)(8,90)(9,89)(10,99)(11,98)(12,106)(13,105)(14,104)(15,103)(16,102)(17,101)(18,100)(19,110)(20,109)(21,108)(22,107)(23,117)(24,116)(25,115)(26,114)(27,113)(28,112)(29,111)(30,121)(31,120)(32,119)(33,118)(34,128)(35,127)(36,126)(37,125)(38,124)(39,123)(40,122)(41,132)(42,131)(43,130)(44,129)(45,139)(46,138)(47,137)(48,136)(49,135)(50,134)(51,133)(52,143)(53,142)(54,141)(55,140)(56,150)(57,149)(58,148)(59,147)(60,146)(61,145)(62,144)(63,154)(64,153)(65,152)(66,151)(67,161)(68,160)(69,159)(70,158)(71,157)(72,156)(73,155)(74,165)(75,164)(76,163)(77,162)(78,172)(79,171)(80,170)(81,169)(82,168)(83,167)(84,166)(85,176)(86,175)(87,174)(88,173)>;

G:=Group( (1,98)(2,99)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,161)(74,162)(75,163)(76,164)(77,165)(78,166)(79,167)(80,168)(81,169)(82,170)(83,171)(84,172)(85,173)(86,174)(87,175)(88,176), (1,65,21,54)(2,66,22,55)(3,56,12,45)(4,57,13,46)(5,58,14,47)(6,59,15,48)(7,60,16,49)(8,61,17,50)(9,62,18,51)(10,63,19,52)(11,64,20,53)(23,78,34,67)(24,79,35,68)(25,80,36,69)(26,81,37,70)(27,82,38,71)(28,83,39,72)(29,84,40,73)(30,85,41,74)(31,86,42,75)(32,87,43,76)(33,88,44,77)(89,144,100,133)(90,145,101,134)(91,146,102,135)(92,147,103,136)(93,148,104,137)(94,149,105,138)(95,150,106,139)(96,151,107,140)(97,152,108,141)(98,153,109,142)(99,154,110,143)(111,166,122,155)(112,167,123,156)(113,168,124,157)(114,169,125,158)(115,170,126,159)(116,171,127,160)(117,172,128,161)(118,173,129,162)(119,174,130,163)(120,175,131,164)(121,176,132,165), (1,131,21,120)(2,132,22,121)(3,122,12,111)(4,123,13,112)(5,124,14,113)(6,125,15,114)(7,126,16,115)(8,127,17,116)(9,128,18,117)(10,129,19,118)(11,130,20,119)(23,89,34,100)(24,90,35,101)(25,91,36,102)(26,92,37,103)(27,93,38,104)(28,94,39,105)(29,95,40,106)(30,96,41,107)(31,97,42,108)(32,98,43,109)(33,99,44,110)(45,155,56,166)(46,156,57,167)(47,157,58,168)(48,158,59,169)(49,159,60,170)(50,160,61,171)(51,161,62,172)(52,162,63,173)(53,163,64,174)(54,164,65,175)(55,165,66,176)(67,144,78,133)(68,145,79,134)(69,146,80,135)(70,147,81,136)(71,148,82,137)(72,149,83,138)(73,150,84,139)(74,151,85,140)(75,152,86,141)(76,153,87,142)(77,154,88,143), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176), (1,97)(2,96)(3,95)(4,94)(5,93)(6,92)(7,91)(8,90)(9,89)(10,99)(11,98)(12,106)(13,105)(14,104)(15,103)(16,102)(17,101)(18,100)(19,110)(20,109)(21,108)(22,107)(23,117)(24,116)(25,115)(26,114)(27,113)(28,112)(29,111)(30,121)(31,120)(32,119)(33,118)(34,128)(35,127)(36,126)(37,125)(38,124)(39,123)(40,122)(41,132)(42,131)(43,130)(44,129)(45,139)(46,138)(47,137)(48,136)(49,135)(50,134)(51,133)(52,143)(53,142)(54,141)(55,140)(56,150)(57,149)(58,148)(59,147)(60,146)(61,145)(62,144)(63,154)(64,153)(65,152)(66,151)(67,161)(68,160)(69,159)(70,158)(71,157)(72,156)(73,155)(74,165)(75,164)(76,163)(77,162)(78,172)(79,171)(80,170)(81,169)(82,168)(83,167)(84,166)(85,176)(86,175)(87,174)(88,173) );

G=PermutationGroup([[(1,98),(2,99),(3,89),(4,90),(5,91),(6,92),(7,93),(8,94),(9,95),(10,96),(11,97),(12,100),(13,101),(14,102),(15,103),(16,104),(17,105),(18,106),(19,107),(20,108),(21,109),(22,110),(23,111),(24,112),(25,113),(26,114),(27,115),(28,116),(29,117),(30,118),(31,119),(32,120),(33,121),(34,122),(35,123),(36,124),(37,125),(38,126),(39,127),(40,128),(41,129),(42,130),(43,131),(44,132),(45,133),(46,134),(47,135),(48,136),(49,137),(50,138),(51,139),(52,140),(53,141),(54,142),(55,143),(56,144),(57,145),(58,146),(59,147),(60,148),(61,149),(62,150),(63,151),(64,152),(65,153),(66,154),(67,155),(68,156),(69,157),(70,158),(71,159),(72,160),(73,161),(74,162),(75,163),(76,164),(77,165),(78,166),(79,167),(80,168),(81,169),(82,170),(83,171),(84,172),(85,173),(86,174),(87,175),(88,176)], [(1,65,21,54),(2,66,22,55),(3,56,12,45),(4,57,13,46),(5,58,14,47),(6,59,15,48),(7,60,16,49),(8,61,17,50),(9,62,18,51),(10,63,19,52),(11,64,20,53),(23,78,34,67),(24,79,35,68),(25,80,36,69),(26,81,37,70),(27,82,38,71),(28,83,39,72),(29,84,40,73),(30,85,41,74),(31,86,42,75),(32,87,43,76),(33,88,44,77),(89,144,100,133),(90,145,101,134),(91,146,102,135),(92,147,103,136),(93,148,104,137),(94,149,105,138),(95,150,106,139),(96,151,107,140),(97,152,108,141),(98,153,109,142),(99,154,110,143),(111,166,122,155),(112,167,123,156),(113,168,124,157),(114,169,125,158),(115,170,126,159),(116,171,127,160),(117,172,128,161),(118,173,129,162),(119,174,130,163),(120,175,131,164),(121,176,132,165)], [(1,131,21,120),(2,132,22,121),(3,122,12,111),(4,123,13,112),(5,124,14,113),(6,125,15,114),(7,126,16,115),(8,127,17,116),(9,128,18,117),(10,129,19,118),(11,130,20,119),(23,89,34,100),(24,90,35,101),(25,91,36,102),(26,92,37,103),(27,93,38,104),(28,94,39,105),(29,95,40,106),(30,96,41,107),(31,97,42,108),(32,98,43,109),(33,99,44,110),(45,155,56,166),(46,156,57,167),(47,157,58,168),(48,158,59,169),(49,159,60,170),(50,160,61,171),(51,161,62,172),(52,162,63,173),(53,163,64,174),(54,164,65,175),(55,165,66,176),(67,144,78,133),(68,145,79,134),(69,146,80,135),(70,147,81,136),(71,148,82,137),(72,149,83,138),(73,150,84,139),(74,151,85,140),(75,152,86,141),(76,153,87,142),(77,154,88,143)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121),(122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143),(144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165),(166,167,168,169,170,171,172,173,174,175,176)], [(1,97),(2,96),(3,95),(4,94),(5,93),(6,92),(7,91),(8,90),(9,89),(10,99),(11,98),(12,106),(13,105),(14,104),(15,103),(16,102),(17,101),(18,100),(19,110),(20,109),(21,108),(22,107),(23,117),(24,116),(25,115),(26,114),(27,113),(28,112),(29,111),(30,121),(31,120),(32,119),(33,118),(34,128),(35,127),(36,126),(37,125),(38,124),(39,123),(40,122),(41,132),(42,131),(43,130),(44,129),(45,139),(46,138),(47,137),(48,136),(49,135),(50,134),(51,133),(52,143),(53,142),(54,141),(55,140),(56,150),(57,149),(58,148),(59,147),(60,146),(61,145),(62,144),(63,154),(64,153),(65,152),(66,151),(67,161),(68,160),(69,159),(70,158),(71,157),(72,156),(73,155),(74,165),(75,164),(76,163),(77,162),(78,172),(79,171),(80,170),(81,169),(82,168),(83,167),(84,166),(85,176),(86,175),(87,174),(88,173)]])

70 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G···4L11A···11E22A···22O44A···44AD
order122222224···44···411···1122···2244···44
size1111111111112···222···222···22···24···4

70 irreducible representations

dim1111122224
type+++++-+++-
imageC1C2C2C2C2Q8D11D22D22Q8×D11
kernelC2×Q8×D11C2×Dic22C2×C4×D11Q8×D11Q8×C22D22C2×Q8C2×C4Q8C2
# reps1338145152010

Matrix representation of C2×Q8×D11 in GL4(𝔽89) generated by

88000
08800
00880
00088
,
88000
08800
004533
003344
,
88000
08800
00088
0010
,
53100
16200
0010
0001
,
3500
348600
0010
0001
G:=sub<GL(4,GF(89))| [88,0,0,0,0,88,0,0,0,0,88,0,0,0,0,88],[88,0,0,0,0,88,0,0,0,0,45,33,0,0,33,44],[88,0,0,0,0,88,0,0,0,0,0,1,0,0,88,0],[53,16,0,0,1,2,0,0,0,0,1,0,0,0,0,1],[3,34,0,0,5,86,0,0,0,0,1,0,0,0,0,1] >;

C2×Q8×D11 in GAP, Magma, Sage, TeX

C_2\times Q_8\times D_{11}
% in TeX

G:=Group("C2xQ8xD11");
// GroupNames label

G:=SmallGroup(352,180);
// by ID

G=gap.SmallGroup(352,180);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,86,159,69,11525]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^11=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽