metacyclic, supersoluble, monomial, Z-group, 5-hyperelementary
Aliases: C71⋊C5, SmallGroup(355,1)
Series: Derived ►Chief ►Lower central ►Upper central
C71 — C71⋊C5 |
Generators and relations for C71⋊C5
G = < a,b | a71=b5=1, bab-1=a25 >
Character table of C71⋊C5
class | 1 | 5A | 5B | 5C | 5D | 71A | 71B | 71C | 71D | 71E | 71F | 71G | 71H | 71I | 71J | 71K | 71L | 71M | 71N | |
size | 1 | 71 | 71 | 71 | 71 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ52 | ζ5 | ζ54 | ζ53 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ3 | 1 | ζ54 | ζ52 | ζ53 | ζ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ4 | 1 | ζ53 | ζ54 | ζ5 | ζ52 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ5 | 1 | ζ5 | ζ53 | ζ52 | ζ54 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ6 | 5 | 0 | 0 | 0 | 0 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | complex faithful |
ρ7 | 5 | 0 | 0 | 0 | 0 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | complex faithful |
ρ8 | 5 | 0 | 0 | 0 | 0 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | complex faithful |
ρ9 | 5 | 0 | 0 | 0 | 0 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | complex faithful |
ρ10 | 5 | 0 | 0 | 0 | 0 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | complex faithful |
ρ11 | 5 | 0 | 0 | 0 | 0 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | complex faithful |
ρ12 | 5 | 0 | 0 | 0 | 0 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | complex faithful |
ρ13 | 5 | 0 | 0 | 0 | 0 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | complex faithful |
ρ14 | 5 | 0 | 0 | 0 | 0 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | complex faithful |
ρ15 | 5 | 0 | 0 | 0 | 0 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | complex faithful |
ρ16 | 5 | 0 | 0 | 0 | 0 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | complex faithful |
ρ17 | 5 | 0 | 0 | 0 | 0 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | complex faithful |
ρ18 | 5 | 0 | 0 | 0 | 0 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | complex faithful |
ρ19 | 5 | 0 | 0 | 0 | 0 | ζ7162+ζ7159+ζ7155+ζ7126+ζ7111 | ζ7129+ζ7120+ζ7115+ζ714+ζ713 | ζ7168+ζ7167+ζ7156+ζ7151+ζ7142 | ζ7169+ζ7161+ζ7134+ζ7128+ζ7121 | ζ7153+ζ7152+ζ7147+ζ7139+ζ7122 | ζ7158+ζ7140+ζ7130+ζ718+ζ716 | ζ7144+ζ7135+ζ7133+ζ7123+ζ717 | ζ7165+ζ7163+ζ7141+ζ7131+ζ7113 | ζ7160+ζ7145+ζ7116+ζ7112+ζ719 | ζ7170+ζ7166+ζ7146+ζ7117+ζ7114 | ζ7149+ζ7132+ζ7124+ζ7119+ζ7118 | ζ7164+ζ7148+ζ7138+ζ7136+ζ7127 | ζ7157+ζ7154+ζ7125+ζ715+ζ71 | ζ7150+ζ7143+ζ7137+ζ7110+ζ712 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71)
(2 55 6 58 26)(3 38 11 44 51)(4 21 16 30 5)(7 41 31 59 9)(8 24 36 45 34)(10 61 46 17 13)(12 27 56 60 63)(14 64 66 32 42)(15 47 71 18 67)(19 50 20 33 25)(22 70 35 62 29)(23 53 40 48 54)(28 39 65 49 37)(43 68 69 52 57)
G:=sub<Sym(71)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71), (2,55,6,58,26)(3,38,11,44,51)(4,21,16,30,5)(7,41,31,59,9)(8,24,36,45,34)(10,61,46,17,13)(12,27,56,60,63)(14,64,66,32,42)(15,47,71,18,67)(19,50,20,33,25)(22,70,35,62,29)(23,53,40,48,54)(28,39,65,49,37)(43,68,69,52,57)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71), (2,55,6,58,26)(3,38,11,44,51)(4,21,16,30,5)(7,41,31,59,9)(8,24,36,45,34)(10,61,46,17,13)(12,27,56,60,63)(14,64,66,32,42)(15,47,71,18,67)(19,50,20,33,25)(22,70,35,62,29)(23,53,40,48,54)(28,39,65,49,37)(43,68,69,52,57) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71)], [(2,55,6,58,26),(3,38,11,44,51),(4,21,16,30,5),(7,41,31,59,9),(8,24,36,45,34),(10,61,46,17,13),(12,27,56,60,63),(14,64,66,32,42),(15,47,71,18,67),(19,50,20,33,25),(22,70,35,62,29),(23,53,40,48,54),(28,39,65,49,37),(43,68,69,52,57)]])
Matrix representation of C71⋊C5 ►in GL5(𝔽2131)
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 1930 | 703 | 119 | 1108 |
1 | 0 | 0 | 0 | 0 |
749 | 1697 | 1105 | 141 | 1882 |
1305 | 436 | 858 | 744 | 1817 |
0 | 0 | 0 | 0 | 1 |
2 | 923 | 604 | 989 | 1706 |
G:=sub<GL(5,GF(2131))| [0,0,0,0,1,1,0,0,0,1930,0,1,0,0,703,0,0,1,0,119,0,0,0,1,1108],[1,749,1305,0,2,0,1697,436,0,923,0,1105,858,0,604,0,141,744,0,989,0,1882,1817,1,1706] >;
C71⋊C5 in GAP, Magma, Sage, TeX
C_{71}\rtimes C_5
% in TeX
G:=Group("C71:C5");
// GroupNames label
G:=SmallGroup(355,1);
// by ID
G=gap.SmallGroup(355,1);
# by ID
G:=PCGroup([2,-5,-71,1081]);
// Polycyclic
G:=Group<a,b|a^71=b^5=1,b*a*b^-1=a^25>;
// generators/relations
Export
Subgroup lattice of C71⋊C5 in TeX
Character table of C71⋊C5 in TeX