Copied to
clipboard

G = D885C2order 352 = 25·11

5th semidirect product of D88 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D885C2, Q163D11, D22.3D4, C8.10D22, Q8.5D22, C88.8C22, C44.10C23, D44.5C22, Dic11.14D4, (C8×D11)⋊3C2, C114(C4○D8), Q8⋊D114C2, (C11×Q16)⋊3C2, C22.36(C2×D4), C2.24(D4×D11), C11⋊C8.8C22, D44⋊C23C2, C4.10(C22×D11), (Q8×C11).5C22, (C4×D11).12C22, SmallGroup(352,114)

Series: Derived Chief Lower central Upper central

C1C44 — D885C2
C1C11C22C44C4×D11D44⋊C2 — D885C2
C11C22C44 — D885C2
C1C2C4Q16

Generators and relations for D885C2
 G = < a,b,c | a88=b2=c2=1, bab=a-1, cac=a65, cbc=a20b >

Subgroups: 442 in 62 conjugacy classes, 27 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C8, C8, C2×C4, D4, Q8, C11, C2×C8, D8, SD16, Q16, C4○D4, D11, C22, C4○D8, Dic11, C44, C44, D22, D22, C11⋊C8, C88, C4×D11, C4×D11, D44, D44, Q8×C11, C8×D11, D88, Q8⋊D11, C11×Q16, D44⋊C2, D885C2
Quotients: C1, C2, C22, D4, C23, C2×D4, D11, C4○D8, D22, C22×D11, D4×D11, D885C2

Smallest permutation representation of D885C2
On 176 points
Generators in S176
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 88)(2 87)(3 86)(4 85)(5 84)(6 83)(7 82)(8 81)(9 80)(10 79)(11 78)(12 77)(13 76)(14 75)(15 74)(16 73)(17 72)(18 71)(19 70)(20 69)(21 68)(22 67)(23 66)(24 65)(25 64)(26 63)(27 62)(28 61)(29 60)(30 59)(31 58)(32 57)(33 56)(34 55)(35 54)(36 53)(37 52)(38 51)(39 50)(40 49)(41 48)(42 47)(43 46)(44 45)(89 126)(90 125)(91 124)(92 123)(93 122)(94 121)(95 120)(96 119)(97 118)(98 117)(99 116)(100 115)(101 114)(102 113)(103 112)(104 111)(105 110)(106 109)(107 108)(127 176)(128 175)(129 174)(130 173)(131 172)(132 171)(133 170)(134 169)(135 168)(136 167)(137 166)(138 165)(139 164)(140 163)(141 162)(142 161)(143 160)(144 159)(145 158)(146 157)(147 156)(148 155)(149 154)(150 153)(151 152)
(1 174)(2 151)(3 128)(4 105)(5 170)(6 147)(7 124)(8 101)(9 166)(10 143)(11 120)(12 97)(13 162)(14 139)(15 116)(16 93)(17 158)(18 135)(19 112)(20 89)(21 154)(22 131)(23 108)(24 173)(25 150)(26 127)(27 104)(28 169)(29 146)(30 123)(31 100)(32 165)(33 142)(34 119)(35 96)(36 161)(37 138)(38 115)(39 92)(40 157)(41 134)(42 111)(43 176)(44 153)(45 130)(46 107)(47 172)(48 149)(49 126)(50 103)(51 168)(52 145)(53 122)(54 99)(55 164)(56 141)(57 118)(58 95)(59 160)(60 137)(61 114)(62 91)(63 156)(64 133)(65 110)(66 175)(67 152)(68 129)(69 106)(70 171)(71 148)(72 125)(73 102)(74 167)(75 144)(76 121)(77 98)(78 163)(79 140)(80 117)(81 94)(82 159)(83 136)(84 113)(85 90)(86 155)(87 132)(88 109)

G:=sub<Sym(176)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,88)(2,87)(3,86)(4,85)(5,84)(6,83)(7,82)(8,81)(9,80)(10,79)(11,78)(12,77)(13,76)(14,75)(15,74)(16,73)(17,72)(18,71)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,63)(27,62)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,54)(36,53)(37,52)(38,51)(39,50)(40,49)(41,48)(42,47)(43,46)(44,45)(89,126)(90,125)(91,124)(92,123)(93,122)(94,121)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110)(106,109)(107,108)(127,176)(128,175)(129,174)(130,173)(131,172)(132,171)(133,170)(134,169)(135,168)(136,167)(137,166)(138,165)(139,164)(140,163)(141,162)(142,161)(143,160)(144,159)(145,158)(146,157)(147,156)(148,155)(149,154)(150,153)(151,152), (1,174)(2,151)(3,128)(4,105)(5,170)(6,147)(7,124)(8,101)(9,166)(10,143)(11,120)(12,97)(13,162)(14,139)(15,116)(16,93)(17,158)(18,135)(19,112)(20,89)(21,154)(22,131)(23,108)(24,173)(25,150)(26,127)(27,104)(28,169)(29,146)(30,123)(31,100)(32,165)(33,142)(34,119)(35,96)(36,161)(37,138)(38,115)(39,92)(40,157)(41,134)(42,111)(43,176)(44,153)(45,130)(46,107)(47,172)(48,149)(49,126)(50,103)(51,168)(52,145)(53,122)(54,99)(55,164)(56,141)(57,118)(58,95)(59,160)(60,137)(61,114)(62,91)(63,156)(64,133)(65,110)(66,175)(67,152)(68,129)(69,106)(70,171)(71,148)(72,125)(73,102)(74,167)(75,144)(76,121)(77,98)(78,163)(79,140)(80,117)(81,94)(82,159)(83,136)(84,113)(85,90)(86,155)(87,132)(88,109)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,88)(2,87)(3,86)(4,85)(5,84)(6,83)(7,82)(8,81)(9,80)(10,79)(11,78)(12,77)(13,76)(14,75)(15,74)(16,73)(17,72)(18,71)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,63)(27,62)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,54)(36,53)(37,52)(38,51)(39,50)(40,49)(41,48)(42,47)(43,46)(44,45)(89,126)(90,125)(91,124)(92,123)(93,122)(94,121)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110)(106,109)(107,108)(127,176)(128,175)(129,174)(130,173)(131,172)(132,171)(133,170)(134,169)(135,168)(136,167)(137,166)(138,165)(139,164)(140,163)(141,162)(142,161)(143,160)(144,159)(145,158)(146,157)(147,156)(148,155)(149,154)(150,153)(151,152), (1,174)(2,151)(3,128)(4,105)(5,170)(6,147)(7,124)(8,101)(9,166)(10,143)(11,120)(12,97)(13,162)(14,139)(15,116)(16,93)(17,158)(18,135)(19,112)(20,89)(21,154)(22,131)(23,108)(24,173)(25,150)(26,127)(27,104)(28,169)(29,146)(30,123)(31,100)(32,165)(33,142)(34,119)(35,96)(36,161)(37,138)(38,115)(39,92)(40,157)(41,134)(42,111)(43,176)(44,153)(45,130)(46,107)(47,172)(48,149)(49,126)(50,103)(51,168)(52,145)(53,122)(54,99)(55,164)(56,141)(57,118)(58,95)(59,160)(60,137)(61,114)(62,91)(63,156)(64,133)(65,110)(66,175)(67,152)(68,129)(69,106)(70,171)(71,148)(72,125)(73,102)(74,167)(75,144)(76,121)(77,98)(78,163)(79,140)(80,117)(81,94)(82,159)(83,136)(84,113)(85,90)(86,155)(87,132)(88,109) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,88),(2,87),(3,86),(4,85),(5,84),(6,83),(7,82),(8,81),(9,80),(10,79),(11,78),(12,77),(13,76),(14,75),(15,74),(16,73),(17,72),(18,71),(19,70),(20,69),(21,68),(22,67),(23,66),(24,65),(25,64),(26,63),(27,62),(28,61),(29,60),(30,59),(31,58),(32,57),(33,56),(34,55),(35,54),(36,53),(37,52),(38,51),(39,50),(40,49),(41,48),(42,47),(43,46),(44,45),(89,126),(90,125),(91,124),(92,123),(93,122),(94,121),(95,120),(96,119),(97,118),(98,117),(99,116),(100,115),(101,114),(102,113),(103,112),(104,111),(105,110),(106,109),(107,108),(127,176),(128,175),(129,174),(130,173),(131,172),(132,171),(133,170),(134,169),(135,168),(136,167),(137,166),(138,165),(139,164),(140,163),(141,162),(142,161),(143,160),(144,159),(145,158),(146,157),(147,156),(148,155),(149,154),(150,153),(151,152)], [(1,174),(2,151),(3,128),(4,105),(5,170),(6,147),(7,124),(8,101),(9,166),(10,143),(11,120),(12,97),(13,162),(14,139),(15,116),(16,93),(17,158),(18,135),(19,112),(20,89),(21,154),(22,131),(23,108),(24,173),(25,150),(26,127),(27,104),(28,169),(29,146),(30,123),(31,100),(32,165),(33,142),(34,119),(35,96),(36,161),(37,138),(38,115),(39,92),(40,157),(41,134),(42,111),(43,176),(44,153),(45,130),(46,107),(47,172),(48,149),(49,126),(50,103),(51,168),(52,145),(53,122),(54,99),(55,164),(56,141),(57,118),(58,95),(59,160),(60,137),(61,114),(62,91),(63,156),(64,133),(65,110),(66,175),(67,152),(68,129),(69,106),(70,171),(71,148),(72,125),(73,102),(74,167),(75,144),(76,121),(77,98),(78,163),(79,140),(80,117),(81,94),(82,159),(83,136),(84,113),(85,90),(86,155),(87,132),(88,109)]])

49 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E8A8B8C8D11A···11E22A···22E44A···44E44F···44O88A···88J
order1222244444888811···1122···2244···4444···4488···88
size1122444424411112222222···22···24···48···84···4

49 irreducible representations

dim11111122222244
type+++++++++++++
imageC1C2C2C2C2C2D4D4D11C4○D8D22D22D4×D11D885C2
kernelD885C2C8×D11D88Q8⋊D11C11×Q16D44⋊C2Dic11D22Q16C11C8Q8C2C1
# reps1112121154510510

Matrix representation of D885C2 in GL4(𝔽89) generated by

781300
601800
006467
00850
,
53200
203600
006467
008525
,
33100
695600
005579
007134
G:=sub<GL(4,GF(89))| [78,60,0,0,13,18,0,0,0,0,64,85,0,0,67,0],[53,20,0,0,2,36,0,0,0,0,64,85,0,0,67,25],[33,69,0,0,1,56,0,0,0,0,55,71,0,0,79,34] >;

D885C2 in GAP, Magma, Sage, TeX

D_{88}\rtimes_5C_2
% in TeX

G:=Group("D88:5C2");
// GroupNames label

G:=SmallGroup(352,114);
// by ID

G=gap.SmallGroup(352,114);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,217,103,362,116,86,297,159,69,11525]);
// Polycyclic

G:=Group<a,b,c|a^88=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^65,c*b*c=a^20*b>;
// generators/relations

׿
×
𝔽