Extensions 1→N→G→Q→1 with N=D4×D11 and Q=C2

Direct product G=N×Q with N=D4×D11 and Q=C2
dρLabelID
C2×D4×D1188C2xD4xD11352,177

Semidirect products G=N:Q with N=D4×D11 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×D11)⋊1C2 = D8×D11φ: C2/C1C2 ⊆ Out D4×D11884+(D4xD11):1C2352,105
(D4×D11)⋊2C2 = D4⋊D22φ: C2/C1C2 ⊆ Out D4×D11884(D4xD11):2C2352,106
(D4×D11)⋊3C2 = D88⋊C2φ: C2/C1C2 ⊆ Out D4×D11884+(D4xD11):3C2352,109
(D4×D11)⋊4C2 = D46D22φ: C2/C1C2 ⊆ Out D4×D11884(D4xD11):4C2352,179
(D4×D11)⋊5C2 = D48D22φ: C2/C1C2 ⊆ Out D4×D11884+(D4xD11):5C2352,184
(D4×D11)⋊6C2 = C4○D4×D11φ: trivial image884(D4xD11):6C2352,183

Non-split extensions G=N.Q with N=D4×D11 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×D11).C2 = SD16×D11φ: C2/C1C2 ⊆ Out D4×D11884(D4xD11).C2352,108

׿
×
𝔽